scholarly journals Continuous-Service M/M/1 Queuing Systems

2019 ◽  
Vol 2 (2) ◽  
pp. 16
Author(s):  
Song Chew

In this paper, we look into a novel notion of the standard M/M/1 queueing system. In our study, we assume that there is a single server and that there are two types of customers: real and imaginary customers. Real customers are regular customers arriving into our queueing system in accordance with a Poisson process. There exist infinitely many imaginary customers residing in the system. Real customers have service priority over imaginary customers. Thus, the server always serves real (regular) customers one by one if there are real customers present in the system. After serving all real customers, the server immediately serves, one at a time, imaginary customers residing in the system. A newly arriving real customer presumably does not preempt the service of an imaginary customer and hence must wait in the queue for their service. The server immediately serves a waiting real customer upon service completion of the imaginary customer currently under service. All service times are identically, independently, and exponentially distributed. Since our systems are characterized by continuous service by the server, we dub our systems continuous-service M/M/1 queueing systems. We conduct the steady-state analysis and determine common performance measures of our systems. In addition, we carry out simulation experiments to verify our results. We compare our results to that of the standard M/M/1 queueing system, and draw interesting conclusions.

Author(s):  
Viktor Afonin ◽  
Vladimir Valer'evich Nikulin

The article focuses on attempt to optimize two well-known Markov systems of queueing: a multichannel queueing system with finite storage, and a multichannel queueing system with limited queue time. In the Markov queuing systems, the intensity of the input stream of requests (requirements, calls, customers, demands) is subject to the Poisson law of the probability distribution of the number of applications in the stream; the intensity of service, as well as the intensity of leaving the application queue is subject to exponential distribution. In a Poisson flow, the time intervals between requirements are subject to the exponential law of a continuous random variable. In the context of Markov queueing systems, there have been obtained significant results, which are expressed in the form of analytical dependencies. These dependencies are used for setting up and numerical solution of the problem stated. The probability of failure in service is taken as a task function; it should be minimized and depends on the intensity of input flow of requests, on the intensity of service, and on the intensity of requests leaving the queue. This, in turn, allows to calculate the maximum relative throughput of a given queuing system. The mentioned algorithm was realized in MATLAB system. The results obtained in the form of descriptive algorithms can be used for testing queueing model systems during peak (unchanged) loads.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ekaterina Evdokimova ◽  
Sabine Wittevrongel ◽  
Dieter Fiems

This paper investigates the performance of a queueing model with multiple finite queues and a single server. Departures from the queues are synchronised or coupled which means that a service completion leads to a departure in every queue and that service is temporarily interrupted whenever any of the queues is empty. We focus on the numerical analysis of this queueing model in a Markovian setting: the arrivals in the different queues constitute Poisson processes and the service times are exponentially distributed. Taking into account the state space explosion problem associated with multidimensional Markov processes, we calculate the terms in the series expansion in the service rate of the stationary distribution of the Markov chain as well as various performance measures when the system is (i) overloaded and (ii) under intermediate load. Our numerical results reveal that, by calculating the series expansions of performance measures around a few service rates, we get accurate estimates of various performance measures once the load is above 40% to 50%.


1997 ◽  
Vol 34 (03) ◽  
pp. 800-805 ◽  
Author(s):  
Vyacheslav M. Abramov

This paper consists of two parts. The first part provides a more elementary proof of the asymptotic theorem of the refusals stream for an M/GI/1/n queueing system discussed in Abramov (1991a). The central property of the refusals stream discussed in the second part of this paper is that, if the expectations of interarrival and service time of an M/GI/1/n queueing system are equal to each other, then the expectation of the number of refusals during a busy period is equal to 1. This property is extended for a wide family of single-server queueing systems with refusals including, for example, queueing systems with bounded waiting time.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Sławomir Hanczewski ◽  
Adam Kaliszan ◽  
Maciej Stasiak

This article presents an approximate convolution model of a multiservice queueing system with the continuous FIFO (cFIFO) service discipline. The model makes it possible to service calls sequentially with variable bit rate, determined by unoccupied (free) resources of the multiservice server. As compared to the FIFO discipline, the cFIFO queue utilizes the resources of a multiservice server more effectively. The assumption in the model is that the queueing system is offered a mixture of independent multiservice Bernoulli-Poisson-Pascal (BPP) call streams. The article also discusses the results of modelling a number of queueing systems to which different, non-Poissonian, call streams are offered. To verify the accuracy of the model, the results of the analytical calculations are compared with the results of simulation experiments for a number of selected queueing systems. The study has confirmed the accuracy of all adopted theoretical assumptions for the proposed analytical model.


1990 ◽  
Vol 22 (03) ◽  
pp. 764-767 ◽  
Author(s):  
Ludolf E. Meester ◽  
J. George Shanthikumar

We consider a tandem queueing system with m stages and finite intermediate buffer storage spaces. Each stage has a single server and the service times are independent and exponentially distributed. There is an unlimited supply of customers in front of the first stage. For this system we show that the number of customers departing from each of the m stages during the time interval [0, t] for any t ≧ 0 is strongly stochastically increasing and concave in the buffer storage capacities. Consequently the throughput of this tandem queueing system is an increasing and concave function of the buffer storage capacities. We establish this result using a sample path recursion for the departure processes from the m stages of the tandem queueing system, that may be of independent interest. The concavity of the throughput is used along with the reversibility property of tandem queues to obtain the optimal buffer space allocation that maximizes the throughput for a three-stage tandem queue.


1985 ◽  
Vol 22 (4) ◽  
pp. 903-911 ◽  
Author(s):  
V. Giorno ◽  
C. Negri ◽  
A. G. Nobile

Single–server–single-queue–FIFO-discipline queueing systems are considered in which at most a finite number of customers N can be present in the system. Service and arrival rates are taken to be dependent upon that state of the system. Interarrival intervals, service intervals, waiting times and busy periods are studied, and the results obtained are used to investigate the features of a special queueing model characterized by parameters (λ (Ν –n), μn). This model retains the qualitative features of the C-model proposed by Conolly [2] and Chan and Conolly [1]. However, quite unlike the latter, it also leads to closed-form expressions for the transient probabilities, the interarrival and service probability density functions and their moments, as well as the effective interarrival and service densities and their moments. Finally, some computational results are given to compare the model discussed in this paper with the C-model.


1985 ◽  
Vol 22 (3) ◽  
pp. 688-696 ◽  
Author(s):  
A. G. De Kok ◽  
H. C. Tijms

A queueing situation often encountered in practice is that in which customers wait for service for a limited time only and leave the system if not served during that time. This paper considers a single-server queueing system with Poisson input and general service times, where a customer becomes a lost customer when his service has not begun within a fixed time after his arrival. For performance measures like the fraction of customers who are lost and the average delay in queue of a customer we obtain exact and approximate results that are useful for practical applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
K. V. Abdul Rasheed ◽  
M. Manoharan

We consider discouraged arrival of Markovian queueing systems whose service speed is regulated according to the number of customers in the system. We will reduce the congestion in two ways. First we attempt to reduce the congestion by discouraging the arrivals of customers from joining the queue. Secondly we reduce the congestion by introducing the concept of service switches. First we consider a model in which multiple servers have three service ratesμ1,μ2, andμ(μ1≤μ2<μ), say, slow, medium, and fast rates, respectively. If the number of customers in the system exceeds a particular pointK1orK2, the server switches to the medium or fast rate, respectively. For this adaptive queueing system the steady state probabilities are derived and some performance measures such as expected number in the system/queue and expected waiting time in the system/queue are obtained. Multiple server discouraged arrival model having one service switch and single server discouraged arrival model having one and two service switches are obtained as special cases. A Matlab program of the model is presented and numerical illustrations are given.


1983 ◽  
Vol 20 (04) ◽  
pp. 920-923 ◽  
Author(s):  
Hau Leung Lee ◽  
Morris A. Cohen

Convexity of performance measures of queueing systems is important in solving control problems of multi-facility systems. This note proves that performance measures such as the expected waiting time, expected number in queue, and the Erlang delay formula are convex with respect to the arrival rate or the traffic intensity of the M/M/c queueing system.


1990 ◽  
Vol 22 (3) ◽  
pp. 764-767 ◽  
Author(s):  
Ludolf E. Meester ◽  
J. George Shanthikumar

We consider a tandem queueing system with m stages and finite intermediate buffer storage spaces. Each stage has a single server and the service times are independent and exponentially distributed. There is an unlimited supply of customers in front of the first stage. For this system we show that the number of customers departing from each of the m stages during the time interval [0, t] for any t ≧ 0 is strongly stochastically increasing and concave in the buffer storage capacities. Consequently the throughput of this tandem queueing system is an increasing and concave function of the buffer storage capacities. We establish this result using a sample path recursion for the departure processes from the m stages of the tandem queueing system, that may be of independent interest. The concavity of the throughput is used along with the reversibility property of tandem queues to obtain the optimal buffer space allocation that maximizes the throughput for a three-stage tandem queue.


Sign in / Sign up

Export Citation Format

Share Document