scholarly journals Characteristics of Decaying Convective Boundary Layers Revealed by Large-Eddy Simulations

Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 434 ◽  
Author(s):  
Seung-Bu Park ◽  
Jong-Jin Baik

The decay of the Convective Boundary Layer (CBL) is studied using large-eddy simulations of free and advective CBLs, in which surface heat supply is suddenly cut off. After the cutoff, coherent convective circulations last about one convective time scale and then fade away. In the mixed layer, the decay time scale increases with height, indicating that nonlocal eddies decay slower than near-surface local eddies. The slower decay of turbulence in the middle of CBL than near-surface turbulence is reconfirmed from the analysis of pattern correlations of perturbations of vertical velocity. Perturbations of potential temperature and scalar concentration decay faster and slower than vertical velocity perturbations, respectively. A downward propagation of negative heat flux and its oscillation are found and a quadrant analysis reveals that warmer air sinking events are responsible for the downward propagation. The fourth quadrant events seem to be induced by demixing of air parcels, entrained from above the CBL. The advective CBL simulation with geostrophic wind illustrates that near-surface eddies are mechanically generated and they decelerate flow from the bottom up in the CBL/residual layer. The two-dimensional spectra show the height- and scale-dependent characteristics of decaying convective turbulence again in the free and advective boundary layer simulations.

2011 ◽  
Vol 50 (2) ◽  
pp. 472-481 ◽  
Author(s):  
Sylvain Cheinet ◽  
Pierre Cumin

Abstract Many wave propagation applications depend on the local, instantaneous structure parameters of humidity and of potential temperature . This study uses a large-eddy simulation to explore and compare the variability of and in the shearless, entrainment-drying convective boundary layer (CBL). The predicted horizontal mean profiles of these quantities are shown to agree with corresponding observations. The results in the bulk CBL suggest that the largest occur in the entrained tropospheric air whereas the largest are within the convective plumes. There are distinct correlations between the vertical velocity and and between the vertical velocity and . It is shown that these correlations can significantly contribute to the mean vertical velocity biases measured from radars and sodars. A physical interpretation for these contributions is offered in terms of the CBL dynamics.


2012 ◽  
Vol 8 (1) ◽  
pp. 83-86 ◽  
Author(s):  
J. G. Pedersen ◽  
M. Kelly ◽  
S.-E. Gryning ◽  
R. Floors ◽  
E. Batchvarova ◽  
...  

Abstract. Vertical profiles of the horizontal wind speed and of the standard deviation of vertical wind speed from Large Eddy Simulations of a convective atmospheric boundary layer are compared to wind LIDAR measurements up to 1400 m. Fair agreement regarding both types of profiles is observed only when the simulated flow is driven by a both time- and height-dependent geostrophic wind and a time-dependent surface heat flux. This underlines the importance of mesoscale effects when the flow above the atmospheric surface layer is simulated with a computational fluid dynamics model.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 986 ◽  
Author(s):  
Mary-Jane M. Bopape ◽  
Robert S. Plant ◽  
Omduth Coceal

Large-eddy simulations are performed using the U.K. Met Office Large Eddy Model to study the effects of resolution on turbulent structures in a convective boundary layer. A standard Smagorinsky subgrid scheme is used. As the grid length is increased, the diagnosed height of the boundary layer increases, and the horizontally- and temporally-averaged temperature near the surface and in the inversion layer increase. At the highest resolution, quadrant analysis shows that the majority of events in the lower boundary layer are associated with cold descending air, followed by warm ascending air. The largest contribution to the total heat flux is made by warm ascending air, with associated strong thermals. At lower resolutions, the contribution to the heat flux from cold descending air is increased, and that from cold ascending air is reduced in the lower boundary layer; around the inversion layer, however, the contribution from cold ascending air is increased. Calculations of the heating rate show that the differences in cold ascending air are responsible for the warm bias below the boundary layer top in the low resolution simulations. Correlation length and time scales for coherent resolved structures increase with increasing grid coarseness. The results overall suggest that differences in the simulations are due to weaker mixing between thermals and their environment at lower resolutions. Some simple numerical experiments are performed to increase the mixing in the lower resolution simulations and to investigate backscatter. Such simulations are successful at reducing the contribution of cold ascending air to the heat flux just below the inversion, although the effects in the lower boundary layer are weaker.


2007 ◽  
Vol 124 (3) ◽  
pp. 405-424 ◽  
Author(s):  
Inanc Senocak ◽  
Andrew S. Ackerman ◽  
Michael P. Kirkpatrick ◽  
David E. Stevens ◽  
Nagi N. Mansour

Sign in / Sign up

Export Citation Format

Share Document