Assessment and Correction of Solar Radiation Measurements with Simple Neural Networks

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1160
Author(s):  
Jason Kelley

Solar radiation received at the Earth’s surface provides the energy driving all micro-meteorological phenomena. Local solar radiation measurements are used to estimate energy mediated processes such as evapotranspiration (ET); this information is important in managing natural resources. However, the technical requirements to reliably measure solar radiation limits more extensive adoption of data-driven management. High-quality radiation sensors are expensive, delicate, and require skill to maintain. In contrast, low-cost sensors are widely available, but may lack long-term reliability and intra-sensor repeatability. As weather stations measure solar radiation and other parameters simultaneously, machine learning can be used to integrate various types of environmental data, identify periods of erroneous measurements, and estimate corrected values. We demonstrate two case studies in which we use neural networks (NN) to augment direct radiation measurements with data from co-located sensors, and generate radiation estimates with comparable accuracy to the data typically available from agro-meteorology networks. NN models that incorporated radiometer data reproduced measured radiation with an R2 of 0.9–0.98, and RMSE less than 100 Wm−2, while models using only weather parameters obtained R2 less than 0.75 and RMSE greater than 140 Wm−2. These cases show that a simple NN implementation can complement standard procedures for estimating solar radiation, create opportunities to measure radiation at low-cost, and foster adoption of data-driven management.

Author(s):  
Vicente Luiz Scalon ◽  
Elson Avallone ◽  
Cristiano Pansanato ◽  
Mario Cesar Ito

2010 ◽  
Vol 1 (08) ◽  
pp. 920-925
Author(s):  
A. Gómez Moreno ◽  
P.J. Casanova Peláez ◽  
F.A. Díaz Garrido ◽  
J.M. Palomar Carnicero ◽  
R. López García ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 1495
Author(s):  
Jehyeok Rew ◽  
Yongjang Cho ◽  
Eenjun Hwang

Species distribution models have been used for various purposes, such as conserving species, discovering potential habitats, and obtaining evolutionary insights by predicting species occurrence. Many statistical and machine-learning-based approaches have been proposed to construct effective species distribution models, but with limited success due to spatial biases in presences and imbalanced presence-absences. We propose a novel species distribution model to address these problems based on bootstrap aggregating (bagging) ensembles of deep neural networks (DNNs). We first generate bootstraps considering presence-absence data on spatial balance to alleviate the bias problem. Then we construct DNNs using environmental data from presence and absence locations, and finally combine these into an ensemble model using three voting methods to improve prediction accuracy. Extensive experiments verified the proposed model’s effectiveness for species in South Korea using crowdsourced observations that have spatial biases. The proposed model achieved more accurate and robust prediction results than the current best practice models.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 223
Author(s):  
Yen-Ling Tai ◽  
Shin-Jhe Huang ◽  
Chien-Chang Chen ◽  
Henry Horng-Shing Lu

Nowadays, deep learning methods with high structural complexity and flexibility inevitably lean on the computational capability of the hardware. A platform with high-performance GPUs and large amounts of memory could support neural networks having large numbers of layers and kernels. However, naively pursuing high-cost hardware would probably drag the technical development of deep learning methods. In the article, we thus establish a new preprocessing method to reduce the computational complexity of the neural networks. Inspired by the band theory of solids in physics, we map the image space into a noninteraction physical system isomorphically and then treat image voxels as particle-like clusters. Then, we reconstruct the Fermi–Dirac distribution to be a correction function for the normalization of the voxel intensity and as a filter of insignificant cluster components. The filtered clusters at the circumstance can delineate the morphological heterogeneity of the image voxels. We used the BraTS 2019 datasets and the dimensional fusion U-net for the algorithmic validation, and the proposed Fermi–Dirac correction function exhibited comparable performance to other employed preprocessing methods. By comparing to the conventional z-score normalization function and the Gamma correction function, the proposed algorithm can save at least 38% of computational time cost under a low-cost hardware architecture. Even though the correction function of global histogram equalization has the lowest computational time among the employed correction functions, the proposed Fermi–Dirac correction function exhibits better capabilities of image augmentation and segmentation.


2021 ◽  
Vol 11 (6) ◽  
pp. 2535
Author(s):  
Bruno E. Silva ◽  
Ramiro S. Barbosa

In this article, we designed and implemented neural controllers to control a nonlinear and unstable magnetic levitation system composed of an electromagnet and a magnetic disk. The objective was to evaluate the implementation and performance of neural control algorithms in a low-cost hardware. In a first phase, we designed two classical controllers with the objective to provide the training data for the neural controllers. After, we identified several neural models of the levitation system using Nonlinear AutoRegressive eXogenous (NARX)-type neural networks that were used to emulate the forward dynamics of the system. Finally, we designed and implemented three neural control structures: the inverse controller, the internal model controller, and the model reference controller for the control of the levitation system. The neural controllers were tested on a low-cost Arduino control platform through MATLAB/Simulink. The experimental results proved the good performance of the neural controllers.


2021 ◽  
Vol 7 (15) ◽  
pp. eabe4166
Author(s):  
Philippe Schwaller ◽  
Benjamin Hoover ◽  
Jean-Louis Reymond ◽  
Hendrik Strobelt ◽  
Teodoro Laino

Humans use different domain languages to represent, explore, and communicate scientific concepts. During the last few hundred years, chemists compiled the language of chemical synthesis inferring a series of “reaction rules” from knowing how atoms rearrange during a chemical transformation, a process called atom-mapping. Atom-mapping is a laborious experimental task and, when tackled with computational methods, requires continuous annotation of chemical reactions and the extension of logically consistent directives. Here, we demonstrate that Transformer Neural Networks learn atom-mapping information between products and reactants without supervision or human labeling. Using the Transformer attention weights, we build a chemically agnostic, attention-guided reaction mapper and extract coherent chemical grammar from unannotated sets of reactions. Our method shows remarkable performance in terms of accuracy and speed, even for strongly imbalanced and chemically complex reactions with nontrivial atom-mapping. It provides the missing link between data-driven and rule-based approaches for numerous chemical reaction tasks.


Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 48-56
Author(s):  
Max Pargmann ◽  
Daniel Maldonado Quinto ◽  
Peter Schwarzbözl ◽  
Robert Pitz-Paal

Sign in / Sign up

Export Citation Format

Share Document