scholarly journals Elevational Movement of Vegetation Greenness on the Tibetan Plateau: Evidence from the Landsat Satellite Observations during the Last Three Decades

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 161
Author(s):  
Liheng Lu ◽  
Xiaoqian Shen ◽  
Ruyin Cao

The Tibetan Plateau, the highest plateau in the world, has experienced strong climate warming during the last few decades. The greater increase of temperature at higher elevations may have strong impacts on the vertical movement of vegetation activities on the plateau. Although satellite-based observations have explored this issue, these observations were normally provided by the coarse satellite data with a spatial resolution of more than hundreds of meters (e.g., GIMMS and MODIS), which could lead to serious mixed-pixel effects in the analyses. In this study, we employed the medium-spatial-resolution Landsat NDVI data (30 m) during 1990–2019 and investigated the relationship between temperature and the elevation-dependent vegetation changes in six mountainous regions on the Tibetan Plateau. Particularly, we focused on the elevational movement of the vegetation greenness isoline to clarify whether the vegetation greenness isoline moves upward during the past three decades because of climate warming. Results show that vegetation greening occurred in all six mountainous regions during the last three decades. Increasing temperatures caused the upward movement of greenness isoline at the middle and high elevations (>4000 m) but led to the downward movement at lower elevations for the six mountainous regions except for Nyainqentanglha. Furthermore, the temperature sensitivity of greenness isoline movement changes from the positive value to negative value by decreasing elevations, suggesting that vegetation growth on the plateau is strongly regulated by other factors such as water availability. As a result, the greenness isoline showed upward movement with the increase of temperature for about 59% pixels. Moreover, the greenness isoline movement increased with the slope angles over the six mountainous regions, suggesting the influence of terrain effects on the vegetation activities. Our analyses improve understandings of the diverse response of elevation-dependent vegetation activities on the Tibetan Plateau.

2015 ◽  
Vol 28 (11) ◽  
pp. 4576-4584 ◽  
Author(s):  
Danlu Cai ◽  
Klaus Fraedrich ◽  
Frank Sielmann ◽  
Ling Zhang ◽  
Xiuhua Zhu ◽  
...  

Abstract Vegetation greenness distributions [based on remote sensing normalized difference vegetation index (NDVI)] and their change are analyzed as functional vegetation–climate relations in a two-dimensional ecohydrological state space spanned by surface flux ratios of energy excess (U; loss by sensible heat H over supply by net radiation N) versus water excess (W; loss by discharge Ro over gain by precipitation P). An ecohydrological ansatz attributes state change trajectories in (U, W) space to external (or climate) and internal (or anthropogenic) causes jointly with vegetation greenness interpreted as an active tracer. Selecting the Tibetan Plateau with its complex topographic, climate, and vegetation conditions as target area, ERA-Interim weather data link geographic and (U, W) state space, into which local remote sensing Global Inventory Modeling and Mapping Studies (GIMMS) data (NDVI) are embedded; a first and second period (1982–93 and 1994–2006) are chosen for change attribution analysis. The study revealed the following results: 1) State space statistics are characterized by a bimodal distribution with two distinct geobotanic regimes (semidesert and steppe) of low and moderate vegetation greenness separated by gaps at aridity D ~ 2 (net radiation over precipitation) and greenness NDVI ~ 0.3. 2) Changes between the first and second period are attributed to external (about 70%) and internal (30%) processes. 3) Attribution conditioned joint distributions of NDVI (and its change) show 38.2% decreasing (61.8% increasing) area cover with low (moderate) greenness while high greenness areas are slightly reduced. 4) Water surplus regions benefit most from climate change (showing vegetation greenness growth) while the energy surplus change is ambiguous, because ecohydrological diagnostics attributes high mountainous regions (such as the Himalayas) as internal without considering the heat storage deficit due to increasing vegetation.


2018 ◽  
Vol 24 (11) ◽  
pp. 5411-5425 ◽  
Author(s):  
Shuai An ◽  
Xiaolin Zhu ◽  
Miaogen Shen ◽  
Yafeng Wang ◽  
Ruyin Cao ◽  
...  

2020 ◽  
Author(s):  
Zuonan Cao ◽  
Peter Kühn ◽  
Thomas Scholten

<p>The Tibetan Plateau is the third-largest glaciated area of the world and is one of the most sensitive regions due to climate warming, such as fast-melting permafrost, dust blow and overgrazing in recent decades. In the past 50 years, the warming rate on the Tibetan Plateau is higher than the global average warming rate with 0.40 ± 0.05 °C per decade. The climate warming is most distinct in the northeastern Tibetan Plateau, implying increasing air and surface temperatures as well as duration and depth of thawing. The main ecological consequences are a disturbed vegetation cover of the surface and a depletion of nutrient-rich topsoils (Baumann et al., 2009, 2014) coupled with an increase of greenhouse gas emissions, mainly CO<sub>2</sub> (Bosch et al., 2017). Due to the extreme environmental conditions resulting from the intense and rapid tectonic uplift, highly adaptive and sensitive ecosystem have developed, and the Plateau is considered to be a key area for the environmental evolution of Earth on regional and global scales, which is particularly sensitive to global warming (Jin et al., 2007; Qiu, 2008). Climate warming and land-use change can reduce soil organic carbon (SOC) stocks as well as soil nitrogen (N) and phosphorus (P) contents and soil quality. Many species showed their distributions by climate-driven shifts towards higher elevation. In Tibetan Plateau, however, the elevational variations of the alpine grassland are rare (Huang et al., 2018) and it is largely unknown how the grass line will respond to global warming and whether soils play a major role. With this research, the hypothesis is tested that soil quality, given by SOC, N and P stocks and content, is a driving factor for the position and structure of the grass line and that soil quality is one of the major controls of biodiversity and biomass production in high-mountain grassland ecosystems.</p><p>A Fourier transformation near and mid-infrared spectroscopy (FT-NMIRS) should be used to measure soil P fractions rapid and for large numbers of soil samples, and analyze environmental factors, including temperature, precipitation, soil development, soil fertility, and the ability of plants to adapt to the environmental impact of climate using FT-NMIRS.</p><p>We explored first near-infrared spectroscopy (NIRS) in soils from grassland on the Tibetan Plateau, northwestern China and extracted P fractions of 196 samples from Haibei Alpine Meadow Ecosystem Research Station, Chinese Academy of Sciences, at four depths increments (0-10 cm 10-20 cm 20-40 cm and 40-70 cm) with different pre-nutrient additions of nitrogen (N) an P. The fractionation data were correlated with the corresponding NIRS soil spectra and showed significant differences for depth increments and fertilizer amendments. The R<sup>2</sup> of NIRS calibrations to predict P in traditional Hedley fractions ranged between 0.12 and 0.90. The model prediction quality was higher for organic than for inorganic P fractions and changed with depth and fertilizer amendment. The results indicate that using NIRS to predict the P fractions can be a promising approach compared with traditional Hedley fractionation for soils in alpine grasslands on the Tibetan Plateau.</p>


2018 ◽  
Vol 425 ◽  
pp. 21-26 ◽  
Author(s):  
Mingming Guo ◽  
Yuandong Zhang ◽  
Xiaochun Wang ◽  
Fengxue Gu ◽  
Shirong Liu

2020 ◽  
Vol 12 (17) ◽  
pp. 2751
Author(s):  
Yan Wang ◽  
Dailiang Peng ◽  
Miaogen Shen ◽  
Xiyan Xu ◽  
Xiaohua Yang ◽  
...  

The Tibetan Plateau (TP) is one of the most sensitive regions to global climate warming, not only at the inter-annual time scale but also at the altitudinal scale. We aim to investigate the contrasting effects of temperature and precipitation on vegetation greenness at different altitudes across the TP. In this study, interannual and elevational characteristics of the Normalized Difference Vegetation Index (NDVI), temperature, and precipitation were examined during the growing season from 1982 to 2015. We compared the elevational movement rates of the isolines of NDVI, temperature, and precipitation, and the sensitivities of elevational NDVI changes to temperature and precipitation. The results show that from 1982 to 2015, the elevational variation rate of isolines for NDVI mismatched with that for temperature and precipitation. The elevational movements of NDVI isolines were mostly controlled by precipitation at elevations below 2400 m and by the temperature at elevations above 2400 m. Precipitation appears to plays a role similar to temperature, and even a more effective role than the temperature at low elevations, in controlling elevational vegetation greenness changes at both spatial and interannual scales in the TP. This study highlights the regulation of temperature and precipitation on vegetation ecosystems along elevation gradients over the whole TP under global warming conditions.


Sign in / Sign up

Export Citation Format

Share Document