scholarly journals Sea Surface Temperature Variability over the Tropical Indian Ocean during the ENSO and IOD Events in 2016 and 2017

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 587
Author(s):  
Sartaj Khan ◽  
Shengchun Piao ◽  
Guangxue Zheng ◽  
Imran Ullah Khan ◽  
David Bradley ◽  
...  

2016 and 2017 were marked by strong El Niño and weak La Niña events, respectively, in the tropical East Pacific Ocean. The strong El Niño and weak La Niña events in the Pacific significantly impacted the sea surface temperature (SST) in the tropical Indian Ocean (TIO) and were followed by extreme negative and weak positive Indian Ocean Dipole (IOD) phases in 2016 and 2017, which triggered floods in the Indian subcontinent and drought conditions in East Africa. The IOD is an irregular and periodic oscillation in the Indian Ocean, which has attracted much attention in the last two decades due to its impact on the climate in surrounding landmasses. Much work has been done in the past to investigate global climate change and its impact on the evolution of IOD. The dynamic behind it, however, is still not well understood. The present study, using various satellite datasets, examined and analyzed the dynamics behind these events and their impacts on SST variability in the TIO. For this study, the monthly mean SST data was provided by NOAA Optimum Interpolation Sea Surface Temperature (OISST). SST anomalies were measured on the basis of 30-year mean daily climatology (1981–2010). It was determined that the eastern and western poles of the TIO play quite different roles during the sequence of negative and positive IOD phases. The analysis of air-sea interactions and the relationship between wind and SST suggested that SST is primarily controlled by wind force in the West pole. On the other hand, the high SST that occurred during the negative IOD phase induced local convection and westerly wind anomalies via the Bjerknes feedback mechanism. The strong convection, which was confined to the (warm) eastern equatorial Indian Ocean was accompanied by east–west SST anomalies that drove a series of downwelling Kelvin waves that deepened the thermocline in the east. Another notable feature of this study was its observation of weak upwelling along the Omani–Arabian coast, which warmed the SST by 1 °C in the summer of 2017 (as compared to 2016). This warming led to increased precipitation in the Bay of Bengal (BoB) region during the summer of 2017. The results of the present work will be important for the study of monsoons and may be useful in predicting both droughts and floods in landmasses in the vicinity of the Indian Ocean, especially in the Indian subcontinent and East African regions.

2007 ◽  
Vol 20 (13) ◽  
pp. 2872-2880 ◽  
Author(s):  
Gary Meyers ◽  
Peter McIntosh ◽  
Lidia Pigot ◽  
Mike Pook

Abstract The Indian Ocean zonal dipole is a mode of variability in sea surface temperature that seriously affects the climate of many nations around the Indian Ocean rim, as well as the global climate system. It has been the subject of increasing research, and sometimes of scientific debate concerning its existence/nonexistence and dependence/independence on/from the El Niño–Southern Oscillation, since it was first clearly identified in Nature in 1999. Much of the debate occurred because people did not agree on what years are the El Niño or La Niña years, not to mention the newly defined years of the positive or negative dipole. A method that identifies when the positive or negative extrema of the El Niño–Southern Oscillation and Indian Ocean dipole occur is proposed, and this method is used to classify each year from 1876 to 1999. The method is statistical in nature, but has a strong basis on the oceanic physical mechanisms that control the variability of the near-equatorial Indo-Pacific basin. Early in the study it was found that some years could not be clearly classified due to strong decadal variation; these years also must be recognized, along with the reason for their ambiguity. The sensitivity of the classification of years is tested by calculating composite maps of the Indo-Pacific sea surface temperature anomaly and the probability of below median Australian rainfall for different categories of the El Niño–Indian Ocean relationship.


2012 ◽  
Vol 25 (23) ◽  
pp. 8177-8195 ◽  
Author(s):  
Ruiqiang Ding ◽  
Jianping Li

Abstract This study confirms a weak spring persistence barrier (SPB) of sea surface temperature anomalies (SSTAs) in the western tropical Indian Ocean (WIO), a strong fall persistence barrier (FPB) in the South China Sea (SCS), and the strongest winter persistence barrier (WPB) in the southeastern tropical Indian Ocean (SEIO). During El Niño events, a less abrupt sign reversal of SSTAs occurs in the WIO during spring, an abrupt reversal occurs in the SCS during fall, and the most abrupt reversal occurs in the SEIO during winter. The sign reversal of SSTA implies a rapid decrease in SSTA persistence, which is favorable for the occurrence of a persistence barrier. The present results indicate that a more abrupt reversal of SSTA sign generally corresponds to a more prominent persistence barrier. El Niño–induced changes in atmospheric circulation result in reduced evaporation and suppressed convection. This in turn leads to the warming over much of the TIO basin, which is an important mechanism for the abrupt switch in SSTA, from negative to positive, in the northern SCS and SEIO. The seasonal cycle of the prevailing surface winds has a strong influence on the timing of the persistence barriers in the TIO. The Indian Ocean dipole (IOD) alone can cause a weak WPB in the SEIO. El Niño events co-occurring with positive IOD further strengthen the SEIO WPB. The SEIO WPB appears to be more strongly influenced by ENSO than by the IOD. In contrast, the WIO SPB and the SCS FPB are relatively independent of the IOD.


2011 ◽  
Vol 24 (14) ◽  
pp. 3734-3747 ◽  
Author(s):  
Andréa S. Taschetto ◽  
Alex Sen Gupta ◽  
Harry H. Hendon ◽  
Caroline C. Ummenhofer ◽  
Matthew H. England

Abstract This study investigates the impact of Indian Ocean sea surface temperature (SST) anomalies on the atmospheric circulation of the Southern Hemisphere during El Niño events, with a focus on Australian climate. During El Niño episodes, the tropical Indian Ocean exhibits two types of SST response: a uniform “basinwide warming” and a dipole mode—the Indian Ocean dipole (IOD). While the impacts of the IOD on climate have been extensively studied, the effects of the basinwide warming, particularly in the Southern Hemisphere, have received less attention. The interannual basinwide warming response has important implications for Southern Hemisphere atmospheric circulation because 1) it accounts for a greater portion of the Indian Ocean monthly SST variance than the IOD pattern and 2) its maximum amplitude occurs during austral summer to early autumn, when large parts of Australia, South America, and Africa experience their monsoon. Using observations and numerical experiments with an atmospheric general circulation model forced with historical SST from 1949 to 2005 over different tropical domains, the authors show that the basinwide warming leads to a Gill–Matsuno-type response that reinforces the anomalies caused by changes in the Pacific as part of El Niño. In particular, the basinwide warming drives strong subsidence over Australia, prolonging the dry conditions during January–March, when El Niño–related SST starts to decay. In addition to the anomalous circulation in the tropics, the basinwide warming excites a pair of barotropic anomalies in the Indian Ocean extratropics that induces an anomalous anticyclone in the Great Australian Bight.


2008 ◽  
Vol 21 (11) ◽  
pp. 2451-2465 ◽  
Author(s):  
Yan Du ◽  
Tangdong Qu ◽  
Gary Meyers

Abstract Using results from the Simple Ocean Data Assimilation (SODA), this study assesses the mixed layer heat budget to identify the mechanisms that control the interannual variation of sea surface temperature (SST) off Java and Sumatra. The analysis indicates that during the positive Indian Ocean Dipole (IOD) years, cold SST anomalies are phase locked with the season cycle. They may exceed −3°C near the coast of Sumatra and extend as far westward as 80°E along the equator. The depth of the thermocline has a prominent influence on the generation and maintenance of SST anomalies. In the normal years, cooling by upwelling–entrainment is largely counterbalanced by warming due to horizontal advection. In the cooling episode of IOD events, coastal upwelling–entrainment is enhanced, and as a result of mixed layer shoaling, the barrier layer no longer exists, so that the effect of upwelling–entrainment can easily reach the surface mixed layer. Horizontal advection spreads the cold anomaly to the interior tropical Indian Ocean. Near the coast of Java, the northern branch of an anomalous anticyclonic circulation spreads the cold anomaly to the west near the equator. Both the anomalous advection and the enhanced, wind-driven upwelling generate the cold SST anomaly of the positive IOD. At the end of the cooling episode, the enhanced surface thermal forcing overbalances the cooling effect by upwelling/entrainment, and leads to a warming in SST off Java and Sumatra.


2005 ◽  
Vol 18 (17) ◽  
pp. 3428-3449 ◽  
Author(s):  
Albert S. Fischer ◽  
Pascal Terray ◽  
Eric Guilyardi ◽  
Silvio Gualdi ◽  
Pascale Delecluse

Abstract The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Niño–Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Niño, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The presence of these two triggers—the first independent of ENSO and the second phase locking the IOZM to El Niño—allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Niño.


2020 ◽  
Vol 33 (2) ◽  
pp. 727-747
Author(s):  
Chunxiang Li ◽  
Chunzai Wang ◽  
Tianbao Zhao

AbstractSeasonal covariability of the dryness/wetness in China and global sea surface temperature (SST) is investigated by using the monthly self-calibrated Palmer drought severity index (PDSI) data and other data from 1950 to 2014. The singular value decomposition (SVD) analysis shows two recurring PDSI–SST coupled modes. The first SVD mode of PDSI is associated with the warm phases of the eastern Pacific–type El Niño–Southern Oscillation (ENSO), the interdecadal Pacific oscillation (IPO) or Pacific decadal oscillation (PDO), the Indian Ocean basin mode (IOBM) in the autumn and winter, and the cold phase of the IOBM in the spring. Meanwhile, the Atlantic multidecadal oscillation (AMO) pattern appears in every season except the autumn. The second SVD mode of PDSI is accompanied by a central Pacific–type El Niño developing from the winter to autumn over the tropical Pacific and a positive phase of IPO or PDO from the winter to summer. Moreover, an AMO pattern is observed in all seasons except the summer, whereas the SST over the tropical Indian Ocean shows negligible variations. The further analyses suggest that AMO remote forcing may be a primary factor influencing interdecadal variability of PDSI in China, and interannual to interdecadal variability of PDSI seems to be closely associated with the ENSO-related events. Meanwhile, the IOBM may be a crucial factor in interannual variability of PDSI during its mature phase in the spring. In general, the SST-related dryness/wetness anomalies can be explained by the associated atmospheric circulation changes.


Sign in / Sign up

Export Citation Format

Share Document