scholarly journals On the relationship between Indian Ocean sea surface temperature and the transition from El Niño to La Niña

2010 ◽  
Vol 115 (D15) ◽  
Author(s):  
Soo-Hyun Yoo ◽  
John Fasullo ◽  
Song Yang ◽  
Chang-Hoi Ho
2007 ◽  
Vol 20 (13) ◽  
pp. 2872-2880 ◽  
Author(s):  
Gary Meyers ◽  
Peter McIntosh ◽  
Lidia Pigot ◽  
Mike Pook

Abstract The Indian Ocean zonal dipole is a mode of variability in sea surface temperature that seriously affects the climate of many nations around the Indian Ocean rim, as well as the global climate system. It has been the subject of increasing research, and sometimes of scientific debate concerning its existence/nonexistence and dependence/independence on/from the El Niño–Southern Oscillation, since it was first clearly identified in Nature in 1999. Much of the debate occurred because people did not agree on what years are the El Niño or La Niña years, not to mention the newly defined years of the positive or negative dipole. A method that identifies when the positive or negative extrema of the El Niño–Southern Oscillation and Indian Ocean dipole occur is proposed, and this method is used to classify each year from 1876 to 1999. The method is statistical in nature, but has a strong basis on the oceanic physical mechanisms that control the variability of the near-equatorial Indo-Pacific basin. Early in the study it was found that some years could not be clearly classified due to strong decadal variation; these years also must be recognized, along with the reason for their ambiguity. The sensitivity of the classification of years is tested by calculating composite maps of the Indo-Pacific sea surface temperature anomaly and the probability of below median Australian rainfall for different categories of the El Niño–Indian Ocean relationship.


2018 ◽  
Vol 31 (2) ◽  
pp. 877-893 ◽  
Author(s):  
Jingzhi Su ◽  
Renhe Zhang ◽  
Xinyao Rong ◽  
Qingye Min ◽  
Congwen Zhu

After the quick decaying of the 2015 super El Niño, the predicted La Niña unexpectedly failed to materialize to the anticipated standard in 2016. Diagnostic analyses, as well as numerical experiments, showed that this ENSO evolution of the 2015 super El Niño and the hindered 2016 La Niña may be essentially caused by sea surface temperature anomalies (SSTAs) in the subtropical Pacific. The self-sustaining SSTAs in the subtropical Pacific tend to weaken the trade winds during boreal spring–summer, leading to anomalous westerlies along the equatorial region over a period of more than one season. Such long-lasting wind anomalies provide an essential requirement for ENSO formation, particularly before a positive Bjerknes feedback is thoroughly built up between the oceanic and atmospheric states. Besides the 2015 super El Niño and the hindered La Niña in 2016, there were several other El Niño and La Niña events that cannot be explained only by the oceanic heat content in the equatorial Pacific. However, the questions related to those eccentric El Niño and La Niña events can be well explained by suitable SSTAs in the subtropical Pacific. Thus, the leading SSTAs in the subtropical Pacific can be treated as an independent indicator for ENSO prediction, on the basis of the oceanic heat content inherent in the equatorial region. Because ENSO events have become more uncertain under the background of global warming and the Pacific decadal oscillation during recent decades, thorough investigation of the role of the subtropical Pacific in ENSO formation is urgently needed.


2021 ◽  
pp. 1-58
Author(s):  
Hanna Heidemann ◽  
Joachim Ribbe ◽  
Tim Cowan ◽  
Benjamin J. Henley ◽  
Christa Pudmenzky ◽  
...  

AbstractMonsoonal rainfall varies substantially in Northern Australia (AUMR) on interannual, decadal and longer time scales, profoundly impacting natural systems and agricultural communities. Some of this variability arises in response to sea surface temperature (SST) variability in the Indo-Pacific linked to both the El Niño-Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). Here we use observations to investigate unresolved issues regarding the influence of the IPO and ENSO on AUMR. Specifically, we show that during negative IPO phases, central Pacific (CP) El Niño events are associated with below average rainfall over northeast Australia, an anomalous anticyclonic pattern to the northwest of Australia, and eastward moisture advection towards the Dateline. In contrast, CP La Niña events (distinct from eastern Pacific La Niña events) during negative IPO phases drive significantly wet conditions over much of northern Australia, a strengthened Walker Circulation, and large-scale moisture flux convergence. During positive IPO phases, the impact of CP El Niño and CP La Niña events on AUMR is weaker. The influence of central Pacific SSTs on AUMR has been stronger during the recent (post-1999) negative IPO phase. The extent to which this strengthening is associated with climate change or merely natural, internal variability is not known.


Author(s):  
Candra Saputra ◽  
I Wayan Arthana ◽  
I Gede Hendrawan

The aim of this research is to know the relationship between lemuru fish catch to Sea Surface Temperature (SST), El-Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) phenomenon in Bali Strait. The results showed, that in the period 2007 – 2016. fluctuations of catches lemuru tends to decline. Sea Surface Temperature (SST) distribution with the lowest temperature 25,28oC at 24,53oC - 27,16oC and the highest temperature is 29,31oC in the range of 28,730C – 30,490C. The lowest temperature occurred in July - September while the highest temperature occurred in January - April. Based on the calculation there is a linkage and relationship between catch and SST as shown on the value of determination and correlation reached 50,0% and 70,73%. Most of the catches occurred in the west season and then the transition II, transition I and East Season. The relationship of ENSO phenomenon to the catch during the El-Nino phase of lemuru catch will increase while in the phase of La-Nina the catch of lemuru will decrease, because time of El-Nino phase of the sea surface temperature (SST) relative low which results in the chlorophyll-a mean case which is a food sources of lemuru fish. Based on Trenberth's theory, (1997), the rise and fall of the ENSO Index of less than six months is not stated in ENSO. From the calculation results during the research of 2007 - 2016 happened three times ENSO phenomenon that is in 2009, 2010 and 2015. At the time of the IOD phenomenon, the IOD (+) phase will result in a decrease in catch while the normal IOD phase and (-) will increase the catch. From the results of this study can also be observed, in the year 2007 - 2011 phenomenon ENSO and IOD have a strong influence on the catch while in the year 2012 - 2016 the influence of the phenomenon of ENSO and IOD has no strong influence caused by the quantity of lemuru fish that have been over exploitation that resulted in the current Bali Strait on Over Fishing status.   Keywords : Fish Catch; El-Nino Southern Oscillation (ENSO); Indian Ocean                    Dipole (IOD)


2018 ◽  
Vol 47 ◽  
pp. 05004
Author(s):  
Mukti Trenggono ◽  
Amron Amron ◽  
Wanda Avia Pasha ◽  
Damar Lazuardy Rolian

Sunda Strait is an important passage for the Java Sea water to flow into the Indian Ocean. There is Java sea in North close to Karimata Strait and Eastern Indian Ocean in South part. Headed from north to south of Sunda Strait, has a high primary productivity that signifies the fertility of water. The strong El Nino (SOI) in 2015, hypothesized to affect variability values of a-chlorophyll content and sea surface temperature in this area. The research aims to know the distribution pattern of chlorophyll-a, and sea surface temperature due to El Nino effect on transition season I (March, April and May 2015). The relationship of both with SOI was analyzed by simple linear correlation analysis. The results showed that the distribution of chlorophyll-a in Northen Sunda Strait is not affected by El Nino but comes from the mouth of the Musi River. The pattern of sea surface temperature distribution from Northern to Southern of Sunda Strait showed in this area affected by El Nino so that the temperature is cooler. The relationship of chlorophyll-a with SOI has a negative moderate correlation (-0.532), indicating that chlorophyll-a in this waters have the direction opposite to SOI and sea surface temperature with SOI has a strong positive correlation (of 0.959).


2020 ◽  
Vol 12 (1) ◽  
pp. 257-276
Author(s):  
Agus S. Atmadipoera ◽  
Agitha Saverti Jasmine ◽  
Mulia Purba ◽  
Anastasia R.T.D. Kuswardani

Seasonal coastal upwelling in the Southern Java waters is considered to be modulated by interannual ocean-atmosphere variability of El Nino Southern Oscillation (ENSO).  This study aims to investigate a contrast in seasonal upwelling characteristics during the La Nina 2010 and El Nino 2015 events, by using multi-datasets from INDESO model output and satellite-derived datasets. Distinct characteristics of seasonal upwelling was clearly seen. In La Nina, surface ocean-atmosphere variables were much lower than that observed in El Nino, except for precipitation rate, sea surface temperature, and sea surface height.  In La Nina, warmer (27-28°C) and a very freshwater (<33.80psu) were predominant in the upper 45m depth, concealing upwelling cooler water at subsurface. In contrast, in the El Nino, a drastic upwelled subsurface water of isotherms of 25-26°C and isohalines of 34.24-34.44psu were outcropped at the sea surface. Temperature-based upwelling index is -2°C and +4°C, demonstrating the ENSO has strongly modulated the upwelling intensity. A strong eastward South Java Coastal Current (SJCC) was found only in La Nina event.  Persistent westward Indonesian Throughflow south of 9.5°S were visible both in different ENSO events.  Estimate of Ekman transport derived from model meridional current was intervened strongly by the presence of the SJCC and the ITF.


Sign in / Sign up

Export Citation Format

Share Document