scholarly journals Seasonal Evolution of the Chemical Composition of Atmospheric Aerosol in Terra Nova Bay (Antarctica)

Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1030
Author(s):  
Flavio Vagnoni ◽  
Silvia Illuminati ◽  
Anna Annibaldi ◽  
Francesco Memmola ◽  
Giada Giglione ◽  
...  

Atmospheric aerosol samples were collected at Faraglione Camp, 3 km away from the Italian Mario Zucchelli Station (Terra Nova Bay, Ross Sea), from 1 December 2013 to 2 February 2014. A two-step extraction procedure was applied to characterize the soluble and insoluble components of PM10-bound metals. Samples were analyzed for Al, Fe, Cd, Cu, and Pb by square wave anodic stripping voltammetry (SWASV) and by graphite furnace atomic absorption spectrophotometer (GF-AAS). The mean atmospheric concentrations were (reported as means ± SD) Al 24 ± 3 ng m−3; Fe 23 ± 4 ng m−3; Cd 0.92 ± 0.53 pg m−3; Cu 43 ± 9 pg m−3, and Pb 16 ± 5 pg m−3. The fractionation pattern was metal-specific, with Al, Fe, and Pb mainly present in the insoluble fractions, Cd in the soluble one, and Cu equally distributed between the two fractions. The summer evolution showed overall constant behavior of both fractions for Al and Fe, while a bell-shaped trend was observed for the three trace metals. Cd and Cu showed a bell-shaped evolution involving both fractions. A seasonal increase in Pb occurred only for the insoluble fraction, while the soluble fraction remained almost constant. Sequential extraction and enrichment factors indicated a crustal origin for Al, Fe, and Pb, and additional (marine or anthropogenic) contributions for Cd and Cu. Back trajectory analysis showed a strong contribution of air masses derived from the Antarctic plateau. A potential low contribution from anthropized areas cannot be excluded. Further studies are necessary to better characterize the chemical composition of the aerosol, to discriminate between natural and anthropogenic sources, and to evaluate a quantitative source apportionment.

2021 ◽  
pp. 103510
Author(s):  
Alessandro Cau ◽  
Claudia Ennas ◽  
Davide Moccia ◽  
Olga Mangoni ◽  
Francesco Bolinesi ◽  
...  

2011 ◽  
Vol 52 (57) ◽  
pp. 291-300 ◽  
Author(s):  
Stefan Kern ◽  
Stefano Aliani

AbstractWintertime (April–September) area estimates of the Terra Nova Bay polynya (TNBP), Antarctica, based on satellite microwave radiometry are compared with in situ observations of water salinity, temperature and currents at a mooring in Terra Nova Bay in 1996 and 1997. In 1996, polynya area anomalies and associated anomalies in polynya ice production are significantly correlated with salinity anomalies at the mooring. Salinity anomalies lag area and/or ice production anomalies by about 3 days. Up to 50% of the variability in the salinity at the mooring position can be explained by area and/or ice production anomalies in the TNBP for April–September 1996. This value increases to about 70% when considering shorter periods like April–June or May–July, but reduces to 30% later, for example July–September, together with a slight increase in time lag. In 1997, correlations are smaller, less significant and occur at a different time lag. Analysis of ocean currents at the mooring suggests that in 1996 conditions were more favourable than in 1997 for observing the impact of descending plumes of salt-enriched water formed in the polynya during ice formation on the water masses at the mooring depth.


2004 ◽  
Vol 23 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Maria De Domenico ◽  
Angelina Lo Giudice ◽  
Luigi Michaud ◽  
Marcello Saitta ◽  
Vivia Bruni

PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153254 ◽  
Author(s):  
Roksana Majewska ◽  
Peter Convey ◽  
Mario De Stefano

1999 ◽  
Vol 11 (2) ◽  
pp. 261-264 ◽  
Author(s):  
Filippo Mangani ◽  
Michela Maione ◽  
Luciano Lattanzi

CCl3F (or CFC-11) and CCl2F2 (or CFC-12) were determined in air samples collected, during subsequent summer Antarctic campaigns, in different sampling sites in the Ross Sea Region. The samples were analysed by GC-ECD after enrichment. Data obtained since 1988–89 were plotted to observe the trend of CFCs atmospheric concentration levels. A decrease in the rate of increase of CFC-12 concentration was observed, whilst the concentration of CFC-11 was actually seen to be decreasing.


Polar Biology ◽  
2013 ◽  
Vol 36 (5) ◽  
pp. 731-753 ◽  
Author(s):  
Álvaro L. Peña Cantero ◽  
Ferdinando Boero ◽  
Stefano Piraino

Author(s):  
P. Povero ◽  
M. Chiantore ◽  
C. Misic ◽  
G. Budillon ◽  
R. Cattaneo-Vietti

Sign in / Sign up

Export Citation Format

Share Document