scholarly journals Analysis of Marine Diesel Engine Emission Characteristics of Different Power Ranges in China

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1108
Author(s):  
Zhongmin Ma ◽  
Yuanyuan Yang ◽  
Peiting Sun ◽  
Hui Xing ◽  
Shulin Duan ◽  
...  

In order to accurately assess China’s port air pollution caused by the shipping industry, two main methods can be used to calculate the emissions of ships, including the method based on ship fuel consumption and the method based on ship activities. Both methods require accurate diesel engine emission factors, or specific emissions. In this paper, the emission characteristics of NOX, CO, CO2 and THC from 197 domestic marine diesel engines were tested under bench test conditions by a standard emission measurement system. The diesel engines were divided into six Classes, A~F, according to their power distribution, and the fuel-based emission factors and energy-based emission factors of marine main engine and auxiliary engine meeting IMO NOX Tier II standards were given. The results showed that the main engine fuel-based emission factors of NOX, CO, CO2 and THC from Class A to Class F were 33.25~76.58, 2.70~4.33, 3123.92~3166.47 and 1.10~2.64 kg/t-fuel, respectively; and the energy-based emission factors were 6.57~11.75, 0.56~0.81, 530.28~659.71 and 0.18~0.61 g/kW h, respectively. The auxiliary engine fuel-based emission factors of NOX, CO, CO2 and THC from Class A to Class D were 27.17~39.81, 2.66~5.12, 3113.01~3141.34 and 1.16~2.87 kg/t-fuel respectively; and their energy-based emission factors were 6.06~8.33, 0.47~0.77, 656.86~684.91 and 0.21~0.61 g/kW h, respectively. The emission factors for different types of diesel engines were closely related to the diesel engine load, and the relation between them could be expressed by quadratic polynomial or power function. The results of this paper provide valuable data for the estimation of waterway transportation exhaust emissions and comprehensive understanding of the emission characteristics of marine diesel engines.

2016 ◽  
Vol 52 (3) ◽  
pp. 2496-2505 ◽  
Author(s):  
Wamadeva Balachandran ◽  
Nadarajah Manivannan ◽  
Radu Beleca ◽  
Maysam F. Abbod ◽  
David Brennen ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 417
Author(s):  
Xingyu Liang ◽  
Ziyang Liu ◽  
Kun Wang ◽  
Xiaohui Wang ◽  
Zhijie Zhu ◽  
...  

Low-speed two-stroke marine diesel engines dominate the modern global long-distance transportation market; with the increasingly stringent regulations, the combustion and emissions of these engines is gaining intense interest. The primary objective of the present study was to understand the effects of air-fuel mixing by pilot injection strategy on the combustion and emission characteristics of the marine diesel engines through a numerical study. Specifically, a computational fluid dynamic (CFD) model was established and validated by experimental data for a typical low-speed two-stroke marine diesel engine. The combustion parameters under different stages were analyzed, including mean in-cylinder temperature and pressure, indicated thermal efficiency (ITE), indicated specific fuel consumption (ISFC), and distribution of fuel-air mixture. Results indicated that, due to the premixing effect, the pilot injection produced unburned soot from the main injection’s ignition as well as decrease the intervals between the middle and final stages of combustion, thus raising the in-cylinder temperature. The interaction between the reduction of soot particles resulted from the increased temperature, and the decrease of the stage intervals led to lower overall boundary heat loss, which improved the effective thermal efficiency. The pilot injection timing and quality, respectively, showed quadratic and linear impact modes on engine performance and emissions.


2012 ◽  
Vol 48 ◽  
pp. 3681-3690
Author(s):  
Dimitrios Zarvalis ◽  
Souzana Lorentzou ◽  
Athanasios G. Konstandopoulos

Author(s):  
V. Anandram ◽  
S. Ramakrishnan ◽  
J. Karthick ◽  
S. Saravanan ◽  
G. LakshmiNarayanaRao

In the present work, the combustion, performance and emission characteristics of sunflower oil, sunflower methyl ester and its blends were studied and compared with diesel by employing them as fuel in a single cylinder, direct injection, 4.4 KW, air cooled diesel engine. Emission measurements were carried out using five-gas exhaust gas analyzer and smoke meter. The performance characteristics of Sunflower oil, Sunflower methyl ester and its blends were comparable with those of diesel. The components of exhaust such as HC, CO, NOx and soot concentration of the fuels were measured and presented as a function of load and it was observed that the blends had similar performance and emission characteristics as those of diesel. NOx emissions of sunflower oil methyl ester were slightly higher than that of diesel but that of sunflower oil was slightly lower than that of diesel. With respect to the combustion characteristics it was found that the biofuels have lower ignition delay than diesel. The heat release rate was very high for diesel than for the biofuel.


Sign in / Sign up

Export Citation Format

Share Document