scholarly journals Thermally and Dynamically Driven Atmospheric Circulations over Heterogeneous Atmospheric Boundary Layer: Support for Safety Protocols and Environment Management at Nuclear Central Areas

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1321
Author(s):  
Larissa de Freitas Ramos de Freitas Ramos Jacinto ◽  
Luiz Claudio Gomes Pimentel ◽  
José Francisco de Oliveira de Oliveira Júnior ◽  
Ian Cunha D’Amato Viana Dragaud ◽  
Corbiniano Silva ◽  
...  

Ilha Grande Bay is located in Angra dos Reis, Rio de Janeiro State, Brazil. The area is characterized by different land cover, complex topography and proximity to the Atlantic Ocean. These aspects make it susceptible to thermally and dynamically induced atmospheric circulations such as those associated with valley/mountain and land/sea breeze systems, among others. The Almirante Álvaro Alberto Nuclear Complex (CNAAA) is located in this region, with a total of two nuclear power plants (NPPs) in operation in the Brazilian territory, Angra I and Angra II. Therefore, knowledge of local atmospheric circulation has become a matter of national and international security. Considering the importance of the meteorological security tool as a support for licensing, installation, routine operation and nuclear accident mitigation, the main aim of this study is the development of combined strategies of environmental statistical modeling in the analysis of thermally and dynamically driven atmospheric circulations over mountainous and coastal environments. We identified and hierarchized the influence of the thermally and mechanically driven forcing on the wind regime and stability conditions in the coastal atmospheric boundary layer over the complex topography region. A meteorological network of ground-based instruments was used along with physiographic information for the observational characterization of the atmospheric patterns in the spatial and time–frequency domain. The predominant wind directions and intensity are attributed to the combined action of multiscale weather systems, notably, the valley/mountain and continent/ocean breeze circulations, the forced channeling due to valley axis orientation, the influence of the synoptic scale systems and atmospheric thermal tide. The observational investigation of the combined influence of terrain effects and meteorological systems aimed to understand the local atmospheric circulation serves as support for safety protocols of the NPPs, contemplating operation and environmental management. The importance of the study for the adequacy and skill evaluation of computational modeling systems for atmospheric dispersion of pollutants such as radionuclide and conventional contaminants can be also highlighted, in order that such systems are used as tools for environmental planning and managing nuclear operations, particularly those located in regions over mountainous and coastal environments with a heterogeneous atmospheric boundary layer.

2020 ◽  
Vol 35 (1) ◽  
pp. 50-55
Author(s):  
Fedor Bryukhan

Due to the fact that the potential threat to the health to the public living near nuclear power plants is largely determined by the level of air pollution by radionuclides, identification of the dispersion conditions of pollutants in the atmospheric boundary layer is of great importance in the development of engineering protection means for nuclear facilities. In turn, the engineering protection of nuclear power plants provides for the development of automated radiation monitoring systems and their main components, i. e. atmospheric boundary layer status monitoring systems. When analyzing and predicting the radiation situation in the vicinity of nuclear power plants, the determination of atmospheric dispersion variability parameters over time is essential. This research is aimed at assessing interannual and intra-annual variability of atmospheric dispersion parameters in the Belorussian nuclear power plant siting region based on the atmospheric boundary layer monitoring data. This study has revealed the relative interannual stability of the main average annual atmospheric dispersion characteristics throughout the observation period in 2015-2019. At the same time, the average seasonal values of the atmospheric boundary layer dispersion parameters are characterized by significant fluctuations thereof over the annual course. The feasibility of such monitoring for other potentially hazardous industrial facilities, such as thermal power plants and chemical plants, is also noted.


2007 ◽  
Vol 25 ◽  
pp. 49-55 ◽  
Author(s):  
S. Argentini ◽  
I. Pietroni ◽  
G. Mastrantonio ◽  
A. Viola ◽  
S. Zilitinchevich

2012 ◽  
Vol 3 (4) ◽  
pp. 414-416
Author(s):  
M.SHANAWAZ BEGUM M.SHANAWAZ BEGUM ◽  
◽  
G.SUDHAKAR G.SUDHAKAR ◽  
D.PUNYASESHUDU D.PUNYASESHUDU

Sign in / Sign up

Export Citation Format

Share Document