scholarly journals On the Roles of Advection and Solar Heating in Seasonal Variation of the Migrating Diurnal Tide in the Stratosphere, Mesosphere, and Lower Thermosphere

Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 440 ◽  
Author(s):  
Hongping Gu ◽  
Jian Du

The migrating diurnal tide (DW1) presents a unique latitudinal structure in the stratosphere, mesosphere, and lower thermosphere. In this paper, the physical mechanisms that govern its seasonal variation are examined in these three regions using the 31.5-year (1979–2010) output from the extended Canadian Middle Atmosphere Model (eCMAM30). DW1 annual variation in the stratosphere is mainly controlled by the short-wave heating in the high latitudes, but by both the short-wave and adiabatic heating in the low latitudes. In the mesosphere, linear and nonlinear advection play important roles in the semiannual variation of the tide whereas short-wave heating does not. In the lower thermosphere, the annual variation of DW1 is mainly governed by the short-wave heating and linear advection. This study illustrates the complexity of the main physical mechanisms modulating the seasonal variations of DW1 in different regions of the atmosphere.

2003 ◽  
Vol 21 (3) ◽  
pp. 787-796 ◽  
Author(s):  
C. M. Hall ◽  
S. Nozawa ◽  
C. E. Meek ◽  
A. H. Manson ◽  
Y. Luo

Abstract. It is possible for medium-frequency (MF) radar systems to estimate kinetic energy dissipation rates by measuring signal fading times. Here, we present approximately 5 years of such results from Tromsø (69° N, 19° E) and in particular, investigate the periodicities present at different altitudes in the regime 80 to 100 km. We detect the known annual variation in the mesosphere and the semiannual variation on the lower thermosphere. In addition, other features are observed including terannual and ~ 27-day components in the lower thermosphere.Key words. Meteorology and atmospheric dynamics (climatology; middle atmosphere dynamics; turbulence)


2005 ◽  
Vol 62 (12) ◽  
pp. 4384-4399 ◽  
Author(s):  
Rolando R. Garcia ◽  
Ruth Lieberman ◽  
James M. Russell ◽  
Martin G. Mlynczak

Abstract Observations made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board NASA’s Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) satellite have been processed using Salby’s fast Fourier synoptic mapping (FFSM) algorithm. The mapped data provide a first synoptic look at the mean structure and traveling waves of the mesosphere and lower thermosphere (MLT) since the launch of the TIMED satellite in December 2001. The results show the presence of various wave modes in the MLT, which reach largest amplitude above the mesopause and include Kelvin and Rossby–gravity waves, eastward-propagating diurnal oscillations (“non-sun-synchronous tides”), and a set of quasi-normal modes associated with the so-called 2-day wave. The latter exhibits marked seasonal variability, attaining large amplitudes during the solstices and all but disappearing at the equinoxes. SABER data also show a strong quasi-stationary Rossby wave signal throughout the middle atmosphere of the winter hemisphere; the signal extends into the Tropics and even into the summer hemisphere in the MLT, suggesting ducting by westerly background zonal winds. At certain times of the year, the 5-day Rossby normal mode and the 4-day wave associated with instability of the polar night jet are also prominent in SABER data.


1994 ◽  
Vol 56 (13-14) ◽  
pp. 1731-1752 ◽  
Author(s):  
Yu.I. Portnyagin ◽  
N.A. Makarov ◽  
R.P. Chebotarev ◽  
A.M. Nikonov ◽  
E.S. Kazimirovsky ◽  
...  

2008 ◽  
Vol 26 (5) ◽  
pp. 1181-1187 ◽  
Author(s):  
G. Beig

Abstract. In this paper a brief overview of the changes in atmospheric ion compositions driven by the human-induced changes in related neutral species, and temperature from the troposphere to lower thermosphere has been made. It is found that ionic compositions undergo significant variations. The variations calculated for the double-CO2 scenario are both long-term and permanent in nature. Major neutrals which take part in the lower and middle atmospheric ion chemical schemes and undergo significant changes due to anthropogenic activities are: O, O2, H2O, NO, acetonitrile, pyridinated compounds, acetone and aerosol. The concentration of positive ion/electron density does not change appreciably in the middle atmosphere but indicates a marginal decrease above about 75 km until about 85 km, above which the magnitude of negative trend decreases and becomes negligible at 93 km. Acetonitrile cluster ions in the upper stratosphere are likely to increase, whereas NO+ and NO+(H2O) in the mesosphere and lower thermosphere (MLT) region are expected to decrease for the double CO2 scenario. It is also found that the atmospheric density of pyridinated cluster ions is fast rising in the troposphere.


Sign in / Sign up

Export Citation Format

Share Document