scholarly journals Verification of a Mobile Psychoacoustic Test System

2021 ◽  
Vol 11 (4) ◽  
pp. 673-690
Author(s):  
Jordana C. Soares ◽  
Sangamanatha A. Veeranna ◽  
Vijay Parsa ◽  
Chris Allan ◽  
Winnie Ly ◽  
...  

Many hearing difficulties can be explained as a loss of audibility, a problem easily detected and treated using standard audiological procedures. Yet, hearing can be much poorer (or more impaired) than audibility predicts because of deficits in the suprathreshold mechanisms that encode the rapidly changing, spectral, temporal, and binaural aspects of the sound. The ability to evaluate these mechanisms requires well-defined stimuli and strict adherence to rigorous psychometric principles. This project reports on the comparison between a laboratory-based and a mobile system’s results for psychoacoustic assessment in adult listeners with normal hearing. A description of both systems employed is provided. Psychoacoustic tests include frequency discrimination, amplitude modulation detection, binaural encoding, and temporal gap detection. Results reported by the mobile system were not significantly different from those collected with the laboratory-based system for most of the tests and were consistent with those reported in the literature. The mobile system has the potential to be a feasible option for the assessment of suprathreshold auditory encoding abilities.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Venugopal Manju ◽  
Kizhakke Kodiyath Gopika ◽  
Pitchai Muthu Arivudai Nambi

Amplitude modulations in the speech convey important acoustic information for speech perception. Auditory steady state response (ASSR) is thought to be physiological correlate of amplitude modulation perception. Limited research is available exploring association between ASSR and modulation detection ability as well as speech perception. Correlation of modulation detection thresholds (MDT) and speech perception in noise with ASSR was investigated in twofold experiments. 30 normal hearing individuals and 11 normal hearing individuals within age range of 18–24 years participated in experiments 1 and 2, respectively. MDTs were measured using ASSR and behavioral method at 60 Hz, 80 Hz, and 120 Hz modulation frequencies in the first experiment. ASSR threshold was obtained by estimating the minimum modulation depth required to elicit ASSR (ASSR-MDT). There was a positive correlation between behavioral MDT and ASSR-MDT at all modulation frequencies. In the second experiment, ASSR for amplitude modulation (AM) sweeps at four different frequency ranges (30–40 Hz, 40–50 Hz, 50–60 Hz, and 60–70 Hz) was recorded. Speech recognition threshold in noise (SRTn) was estimated using staircase procedure. There was a positive correlation between amplitude of ASSR for AM sweep with frequency range of 30–40 Hz and SRTn. Results of the current study suggest that ASSR provides substantial information about temporal modulation and speech perception.


2019 ◽  
Vol 145 (6) ◽  
pp. 3667-3674 ◽  
Author(s):  
Brian A. Walker ◽  
Caitlin M. Gerhards ◽  
Lynne A. Werner ◽  
David L. Horn

1987 ◽  
Vol 30 (4) ◽  
pp. 558-563 ◽  
Author(s):  
Ken W. Grant

The ability of normally hearing and profoundly hearing-impaired subjects to detect frequency modulations was evaluated under conditions where the amplitudes of the test signals were either constant (CA), sinusoidally modulated (SAM), or randomly modulated (RAM). Results for hearing-impaired listeners showed larger frequency difference limens (DLFM) than those for normally hearing listeners for all test frequencies (100 to 1000 Hz) and for all amplitude conditions. For both normal-hearing and hearing-impaired subjects, the DFLM was smallest for the constant amplitude condition and largest for the randomly modulated condition. Differences in performance between the RAM and CA conditions were generally much larger for impaired listeners than for normally hearing listeners. With random amplitude modulation, DLFMs for the hearing-impaired subjects were approximately 36 times larger than those for normally hearing subjects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuping Sun ◽  
Michelle R. Kapolowicz ◽  
Matthew Richardson ◽  
Raju Metherate ◽  
Fan-Gang Zeng

AbstractElectrophysiological studies show that nicotine enhances neural responses to characteristic frequency stimuli. Previous behavioral studies partially corroborate these findings in young adults, showing that nicotine selectively enhances auditory processing in difficult listening conditions. The present work extended previous work to include both young and older adults and assessed the nicotine effect on sound frequency and intensity discrimination. Hypotheses were that nicotine improves auditory performance and that the degree of improvement is inversely proportional to baseline performance. Young (19–23 years old) normal-hearing nonsmokers and elderly (61–80) nonsmokers with normal hearing between 500 and 2000 Hz received nicotine gum (6 mg) or placebo gum in a single-blind, randomized crossover design. Participants performed three experiments (frequency discrimination, frequency modulation identification, and intensity discrimination) before and after treatment. The perceptual differences were analyzed between pre- and post-treatment, as well as between post-treatment nicotine and placebo conditions as a function of pre-treatment baseline performance. Compared to pre-treatment performance, nicotine significantly improved frequency discrimination. Compared to placebo, nicotine significantly improved performance for intensity discrimination, and the improvement was more pronounced in the elderly with lower baseline performance. Nicotine had no effect on frequency modulation identification. Nicotine effects are task-dependent, reflecting possible interplays of subjects, tasks and neural mechanisms.


2021 ◽  
Vol 30 (1) ◽  
pp. 160-169
Author(s):  
Yang-Soo Yoon ◽  
Callie Michelle Boren ◽  
Brianna Diaz

Purpose To measure the effect of testing conditions (in the soundproof booth vs. quiet room), test order, and number of test sessions on spectral and temporal processing in normal-hearing (NH) listeners. Method Thirty-two adult NH listeners participated in the three experiments. For all three experiments, the stimuli were presented to the left ear at the subjects' most comfortable level through headphones. All tests were administered in an adaptive three-alternative forced-choice paradigm. Experiment 1 was designed to compare the effect of soundproof booth and quiet room test conditions on amplitude modulation detection threshold and modulation frequency discrimination threshold with each of the five modulation frequencies. Experiment 2 was designed to compare the effect of two test orders on the frequency discrimination thresholds under the quiet room test conditions. The thresholds were first measured in the ascending and descending order of four pure tones, and then with counterbalanced order. For Experiment 3, the amplitude discrimination threshold under the quiet room testing condition was assessed 3 times to determine the effect of the number of test sessions. Then the thresholds were compared over the sessions. Results Results showed no significant effect of test environment. The test order is an important variable for frequency discrimination, particularly between piano tunes and pure tones. Results also show no significant difference across test sessions. Conclusions These results suggest that a controlled test environment may not be required in spectral and temporal assessment for NH listeners. Under the quiet test environment, a single outcome measure is sufficient, but test orders should be counterbalanced.


2013 ◽  
Vol 302 ◽  
pp. 107-112 ◽  
Author(s):  
Andrea Lingner ◽  
Kathrin Kugler ◽  
Benedikt Grothe ◽  
Lutz Wiegrebe

Sign in / Sign up

Export Citation Format

Share Document