scholarly journals Hydrogels for Liver Tissue Engineering

2019 ◽  
Vol 6 (3) ◽  
pp. 59 ◽  
Author(s):  
Shicheng Ye ◽  
Jochem W.B. Boeter ◽  
Louis C. Penning ◽  
Bart Spee ◽  
Kerstin Schneeberger

Bioengineered livers are promising in vitro models for drug testing, toxicological studies, and as disease models, and might in the future be an alternative for donor organs to treat end-stage liver diseases. Liver tissue engineering (LTE) aims to construct liver models that are physiologically relevant. To make bioengineered livers, the two most important ingredients are hepatic cells and supportive materials such as hydrogels. In the past decades, dozens of hydrogels have been developed to act as supportive materials, and some have been used for in vitro models and formed functional liver constructs. However, currently none of the used hydrogels are suitable for in vivo transplantation. Here, the histology of the human liver and its relationship with LTE is introduced. After that, significant characteristics of hydrogels are described focusing on LTE. Then, both natural and synthetic materials utilized in hydrogels for LTE are reviewed individually. Finally, a conclusion is drawn on a comparison of the different hydrogels and their characteristics and ideal hydrogels are proposed to promote LTE.

2021 ◽  
Vol 8 (11) ◽  
pp. 185
Author(s):  
Amit Panwar ◽  
Prativa Das ◽  
Lay Poh Tan

Liver-associated diseases and tissue engineering approaches based on in vitro culture of functional Primary human hepatocytes (PHH) had been restricted by the rapid de-differentiation in 2D culture conditions which restricted their usability. It was proven that cells growing in 3D format can better mimic the in vivo microenvironment, and thus help in maintaining metabolic activity, phenotypic properties, and longevity of the in vitro cultures. Again, the culture method and type of cell population are also recognized as important parameters for functional maintenance of primary hepatocytes. Hepatic organoids formed by self-assembly of hepatic cells are microtissues, and were able to show long-term in vitro maintenance of hepato-specific characteristics. Thus, hepatic organoids were recognized as an effective tool for screening potential cures and modeling liver diseases effectively. The current review summarizes the importance of 3D hepatic organoid culture over other conventional 2D and 3D culture models and its applicability in Liver tissue engineering.


2017 ◽  
Vol 63 ◽  
pp. 261-273 ◽  
Author(s):  
Siou Han Chang ◽  
Han Hsiang Huang ◽  
Pei Leun Kang ◽  
Yu Chian Wu ◽  
Ming-Huang Chang ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


2020 ◽  
Vol 21 (12) ◽  
pp. 4537
Author(s):  
Svenja Koslowski ◽  
Camille Latapy ◽  
Pierrïck Auvray ◽  
Marc Blondel ◽  
Laurent Meijer

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.


2012 ◽  
Vol 21 (2-3) ◽  
pp. 429-436 ◽  
Author(s):  
Kazuo Ohashi ◽  
Kohei Tatsumi ◽  
Chise Tateno ◽  
Miho Kataoka ◽  
Rie Utoh ◽  
...  

Author(s):  
Verônica Assalin Zorgetto-Pinheiro ◽  
Alexandre Meira de Vasconcelos ◽  
Rafael Sanaiotte Pinheiro ◽  
Danielle Bogo ◽  
Iandara Schettert Silva

Rheumatoid arthritis is an autoimmune and chronic pathological condition characterized by an inflammatory process of the joints It is a complex and multifactorial, involving genetic, epigenetic and environmental factors and the use of experimental models is required to better understand its pathology and for drug testing. The aim of this study was to perform a systematic literature review on experimental models in rheumatoid arthritis using IRAMUTEQ, a software that analysis, qualitatively and quantitatively, text fragments, as a methodological tool. After searching for articles published in the last five years on Scopus database and applying the exclusion criteria, we ended with 84 articles. The most commonly employed experimental models was the arthritis induction by inoculation of the Complete Freund's Adjuvant (CFA), followed by the use of combined methodologies and the collagen-induced arthritis (CIA). The analyses of abstracts by the IRAMUTEQ software provided a classification according to their textual elements in four classes, which were grouped into three main themes: in vivo models (class 1), clinical practice and traditional medicine (classes 2 and 3) and in vitro models (class 4) and it was also possible to build a similarity tree of the terms present in the abstracts and a word cloud with the most cited terms. Thus, the use of the IRAMUTEQ software as a methodological tool has been satisfactory, since it was possible to identify the main experimental models used, keywords, pathological processes and molecules involved in the pathogenesis of rheumatoid arthritis free of the researchers’ bias, in addition to being a tool for visual and intuitive results.


2021 ◽  
Vol 22 (2) ◽  
pp. 830
Author(s):  
Georgia Pennarossa ◽  
Sharon Arcuri ◽  
Teresina De Iorio ◽  
Fulvio Gandolfi ◽  
Tiziana A. L. Brevini

Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.


2021 ◽  
Vol 22 (7) ◽  
pp. 3483
Author(s):  
Colin Rae ◽  
Francesco Amato ◽  
Chiara Braconi

In the search for the ideal model of tumours, the use of three-dimensional in vitro models is advancing rapidly. These are intended to mimic the in vivo properties of the tumours which affect cancer development, progression and drug sensitivity, and take into account cell–cell interactions, adhesion and invasiveness. Importantly, it is hoped that successful recapitulation of the structure and function of the tissue will predict patient response, permitting the development of personalized therapy in a timely manner applicable to the clinic. Furthermore, the use of co-culture systems will allow the role of the tumour microenvironment and tissue–tissue interactions to be taken into account and should lead to more accurate predictions of tumour development and responses to drugs. In this review, the relative merits and limitations of patient-derived organoids will be discussed compared to other in vitro and ex vivo cancer models. We will focus on their use as models for drug testing and personalized therapy and how these may be improved. Developments in technology will also be considered, including the use of microfluidics, 3D bioprinting, cryopreservation and circulating tumour cell-derived organoids. These have the potential to enhance the consistency, accessibility and availability of these models.


Sign in / Sign up

Export Citation Format

Share Document