scholarly journals Seeing Is Believing: Gap Junctions in Motion

Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 494
Author(s):  
Xinbo Li

Gap junctional intercellular communication (GJIC) channels between cells are composed of connexin proteins that form hexamers (connexons) in adjacent plasma membranes [...]

2014 ◽  
Vol 307 (1) ◽  
pp. G24-G32 ◽  
Author(s):  
Anamika M. Reed ◽  
Thomas Kolodecik ◽  
Sohail Z. Husain ◽  
Fred S. Gorelick

Decreased extracellular pH is observed in a number of clinical conditions and can sensitize to the development and worsen the severity of acute pancreatitis. Because intercellular communication through gap junctions is pH-sensitive and modulates pancreatitis responses, we evaluated the effects of low pH on gap junctions in the rat pancreatic acinar cell. Decreasing extracellular pH from 7.4 to 7.0 significantly inhibited gap junctional intracellular communication. Acidic pH also significantly reduced levels of connexin32, the predominant gap junction protein in acinar cells, and altered its localization. Increased degradation through the proteasomal, lysosomal, and autophagic pathways mediated the decrease in connexin32 under low-pH conditions. These findings provide the first evidence that low extracellular pH can regulate gap junctional intercellular communication by enhancing connexin degradation.


2014 ◽  
Vol 306 (12) ◽  
pp. H1708-H1713 ◽  
Author(s):  
Jun Liu ◽  
Vinayakumar Siragam ◽  
Jun Chen ◽  
Michael D. Fridman ◽  
Robert M. Hamilton ◽  
...  

Gap junctional intercellular communication (GJIC) is a critical part of cellular activities and is necessary for electrical propagation among contacting cells. Disorders of gap junctions are a major cause for cardiac arrhythmias. Dye transfer through microinjection is a conventional technique for measuring GJIC. To overcome the limitations of manual microinjection and perform high-throughput GJIC measurement, here we present a new robotic microinjection system that is capable of injecting a large number of cells at a high speed. The highly automated system enables large-scale cell injection (thousands of cells vs. a few cells) without major operator training. GJIC of three cell lines of differing gap junction density, i.e., HeLa, HEK293, and HL-1, was evaluated. The effect of a GJIC inhibitor (18-α-glycyrrhetinic acid) was also quantified in the three cell lines. System operation speed, success rate, and cell viability rate were quantitatively evaluated based on robotic microinjection of over 4,000 cells. Injection speed was 22.7 cells per min, with 95% success for cell injection and >90% survival. Dye transfer cell counts and dye transfer distance correlated with the expected connexin expression of each cell type, and inhibition of dye transfer correlated with the concentration of GJIC inhibitor. Additionally, real-time monitoring of dye transfer enables the calculation of coefficients of molecular diffusion through gap junctions. This robotic microinjection dye transfer technique permits rapid assessment of gap junction function in confluent cell cultures.


2001 ◽  
Vol 29 (4) ◽  
pp. 606-612 ◽  
Author(s):  
W. H. Evans ◽  
S. Boitano

Intercellular co-operation is a fundamental and widespread feature in tissues and organs. An important mechanism ensuring multicellular homoeostasis involves signalling between cells via gap junctions that directly connect the cytosolic contents of adjacent cells. Cell proliferation and intercellular communication across gap junctions are closely linked, and a number of pathologies in which communication is disrupted are known where connexins, the gap-junctional proteins, are modified. The proteins of gap junctions thus emerge as therapeutic targets inviting the development and exploitation of chemical tools and drugs that specifically influence intercellular communication. Connexin mimetic peptides that correspond to short specific sequences in the two extracellular loops of connexins are a class of benign, specific and reversible inhibitors of gap-junctional communication that have been studied recently in a broad range of cells, tissues and organs. This review summarizes the properties and uses of these short synthetic peptides, and compares their probable mechanism of action with those of a wide range of other less specific traditional gap-junction inhibitors.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 704 ◽  
Author(s):  
Thomas Tschernig

This review focuses on connexins and nexus or gap junctions in the genesis, progression, and therapy of carcinomas of the human urinary tract. Some decades ago, the idea was born that gap junctional intercellular communication might prevent both the onset and the progression of cancer. Later evidence indicated that, on the contrary, synthesis and the presence of connexins as a prerequisite for gap junctional intercellular communication might promote the occurrence of cancer and metastases. The research history of urinary bladder cancer is a good example of the development of scientific perception. So far, the role of gap junctional intercellular communication in carcinogenesis and cancer progression, as well as in therapeutical approaches, remains unclear.


2001 ◽  
Vol 20 (11) ◽  
pp. 577-583 ◽  
Author(s):  
S-H Jeong ◽  
M-H Cho ◽  
J-H Cho

Cadmium has been associated with a number of tumors but its role in tumor promotion has not been elucidated clearly or the results obtained from various studies have been conflicting. This study was designed to investigate the effects of cadmium on the gap junctional intercellular communication (GJIC), number of gap junctions per cell, and cell proliferation in WB-F344 rat liver epithelial cells from the viewpoint of tumor promotion. GJIC was monitored by counting the cells stained with Lucifer yellow CH dye, using the scrape-loading and dye-transfer method. The numbers of gap junctions per cell were visually quantitated after an indirect immunostaining for gap junction protein using an antibody to connexin 43. Cell proliferation was assayed by direct counting of the living cells using the trypan blue dye exclusion method. In the time course study, cells treated with 200 μM CdCl2 showed rapid and nearly complete inhibition of GJIC (approximately 14% of the control) and a decrease in the number of gap junctions per cell (approximately 21% of the control) at 30 min, and the decrease continued up to 4 h without any changes in the cell viability. Treatment with CdCl2 7.4-200 μM) for 4 h resulted in the decrease of GJIC and gap junction numbers per cell in a dose-response pattern without changes in the cell viability. In the long-term (14 days) exposure studies at doses of 0.01-7.4 μM CdCl2, an increase in cell proliferation was observed at low doses of 0.03-2.5 μM CdCl2, with GJIC also decreasing. These data demonstrate that cadmium inhibits GJIC, reduces the number of gap junctions per cell, and induces cell proliferation while decreasing the function of the gap junction.


2006 ◽  
Vol 290 (5) ◽  
pp. H2015-H2023 ◽  
Author(s):  
Eno Essien Ebong ◽  
Sanghee Kim ◽  
Natacha DePaola

Direct cell-to-cell transfer of ions and small signaling molecules via gap junctions plays a key role in vessel wall homeostasis. Vascular endothelial gap junctional channels are formed by the connexin (Cx) proteins Cx37, Cx40, and Cx43. The mechanisms regulating connexin expression and assembly into functional channels have not been fully identified. We investigated the dynamic regulation of endothelial gap junctional intercellular communication (GJIC) by fluid flow and the participation of each vascular connexin in functional human endothelial gap junctions in vitro. Human aortic endothelial cells (HAEC) were exposed for 5, 16, and 24 h to physiological flows in a parallel-plate flow chamber. Connexin protein expression and localization were evaluated by immunocytochemistry, and functional GJIC was evaluated by dye injection. Connexin-mimetic peptide inhibitors were used to assess the specific connexin composition of functional channels. HAEC monolayers in culture exhibited baseline functional communication at a striking low level despite abundant expression of Cx43 and Cx40 localized at cell-to-cell appositions. Upon exposure to flow, GJIC by dye spread demonstrated a significant time-dependent increase from baseline levels, reaching 7.5-fold in 24 h. Inhibition studies revealed that this response was mediated primarily by Cx40, with lesser contributions of the other two vascular connexins assembled into functional homotypic and/or heterotypic channels. This is the first study to demonstrate that flow simultaneously and differentially regulates expression of the Cx37, Cx40, and Cx43 proteins and their involvement in the augmentation of intercellular communication by dye transfer in human endothelial cells in vitro.


2005 ◽  
Vol 386 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Kotb Abdelmohsen ◽  
Claudia von Montfort ◽  
Dominik Stuhlmann ◽  
P. Arne Gerber ◽  
Ulrich K.M. Decking ◽  
...  

Abstract Exposure of rat liver epithelial cells to doxorubicin, an anthraquinone derivative widely employed in cancer chemotherapy, led to a dose-dependent decrease in gap junctional intercellular communication (GJC). Gap junctions are clusters of inter-cellular channels consisting of connexins, the major connexin in the cells used being connexin-43 (Cx43). Doxorubicin-induced loss of GJC was mediated by activation of extracellular signal-regulated kinase (ERK)-1 and ERK-2, as demonstrated using inhibitors of ERK activation. Furthermore, activation of the epidermal growth factor (EGF) receptor by doxorubicin was responsible for ERK activation and the subsequent attenuation of GJC. Inhibition of GJC, however, was not by direct phosphorylation of Cx43 by ERK-1/2, whereas menadione, a 1,4-naphthoquinone derivative that was previously demonstrated to activate the same EGF receptor-dependent pathway as doxorubicin, resulting in downregulation of GJC, caused strong phos-phorylation of Cx43 at serines 279 and 282. Thus, ERK-dependent downregulation of GJC upon exposure to quinones may occur both by direct phosphorylation of Cx43 and in a phosphorylation-independent manner.


Sign in / Sign up

Export Citation Format

Share Document