scholarly journals Intrinsic Disorder-Based Design of Stable Globular Proteins

Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 64 ◽  
Author(s):  
Galina S. Nagibina ◽  
Ksenia A. Glukhova ◽  
Vladimir N. Uversky ◽  
Tatiana N. Melnik ◽  
Bogdan S. Melnik

Directed stabilization of globular proteins via substitution of a minimal number of amino acid residues is one of the most complicated experimental tasks. This work summarizes our research on the effect of amino acid substitutions on the protein stability utilizing the outputs of the analysis of intrinsic disorder predisposition of target proteins. This allowed us to formulate the basis of one of the possible approaches to the stabilization of globular proteins. The idea is quite simple. To stabilize a protein as a whole, one needs to find its "weakest spot" and stabilize it, but the question is how this weak spot can be found in a query protein. Our approach is based on the utilization of the computational tools for the per-residue evaluation of intrinsic disorder predisposition to search for the "weakest spot" of a query protein (i.e., the region(s) with the highest local predisposition for intrinsic disorder). When such "weakest spot" is found, it can be stabilized through a limited number of point mutations by introducing order-promoting residues at hot spots, thereby increasing structural stability of a protein as a whole. Using this approach, we were able to obtain stable mutant forms of several globular proteins, such as Gαo, GFP, ribosome protein L1, and circular permutant of apical domain of GroEL.

1985 ◽  
Vol 5 (8) ◽  
pp. 1809-1813 ◽  
Author(s):  
R G Chipperfield ◽  
S S Jones ◽  
K M Lo ◽  
R A Weinberg

The transforming activity of naturally arising ras oncogenes results from point mutations that affect residue 12 or 61 of the encoded 21-kilodalton protein (p21). By use of site-directed mutagenesis, we showed that deletions and insertions of amino acid residues in the region of residue 12 are also effective in conferring oncogenic activity on p21. Common to these various alterations is the disruption that they create in this domain of the protein, which we propose results in the inactivation of a normal function of the protein.


A number of facts relating to proteins suggest that the polypeptides in native protein are in a folded state (Astbury 1933, 1934; Astbury and Street 1930, 1931; Pryde 1931; Wrinch 1936 a , b , c , 1937 a ; Langmuir, Schaefer and Wrinch 1937). The type of folding must be such as to imply the possibility of the regular and orderly arrangement of hundreds 01 amino-acid residues which to some extent at least is independent of the particular residues in question. We propose therefore to formulate all types of folding which are geometrically possible. Each hypothesis in turn can then be tested in two ways. We may consider its plausibility in itself: and having developed its implications to the farthest possible point, we may test it against known facts by ad hoc experiments. At present two types of folding have been suggested—by means of cyclol links (Wrinch 1936 a , b , c , 1937 a ; Langmuir, Schaefer and Wrinch 1937; Astbury 1936 a , b , c ; Frank, 1936) and by means of hydrogen bonds (Jordan Lloyd 1932; Jordan Lloyd and Marriott 1933; Mirsky and Pauling 1936; Wrinch and Jordan Lloyd 1936). The search for other types of folding is being continued. So far it has not proved possible to discard either theory on the grounds that the type of link postulated is out of the question. It is there­ fore very desirable to test these theories by means of their implications. Accordingly, on this occasion we consider (Wrinch 1937 b , c ) whether the cyclol theory can stand the test of the body of facts relating to the “globular” proteins, established by Svedberg and his collaborators (Svedberg and others 1929, 1930 a , b , 1934 a , b , 1935).


2002 ◽  
Vol 46 (6) ◽  
pp. 1680-1687 ◽  
Author(s):  
Antonio Javier Martín-Galiano ◽  
Begoña Gorgojo ◽  
Calvin M. Kunin ◽  
Adela G. de la Campa

ABSTRACT The activities of mefloquine (MFL) and related compounds against previously characterized Streptococcus pneumoniae strains carrying defined amino acid substitutions in the c subunit of the F0F1 H+-ATPase were studied. In addition, a series of MFL-resistant (Mflr) strains were isolated and characterized. A good correlation was observed between inhibition of growth and inhibition of the membrane-associated F0F1 H+-ATPase activity. MFL was about 10-fold more active than optochin and about 200-fold more active than quinine in inhibiting both the growth and the ATPase activities of laboratory pneumococcal strain R6. Mutant strains were inhibited by the different compounds to different degrees, depending on their specific mutations in the c subunit. The resistant strains studied had point mutations that changed amino acid residues in either the c subunit or the a subunit of the F0 complex. Changes in the c subunit were located in one of the two transmembrane α helices: residues M13, G14, G20, M23, and N24 of helix 1 and residues M44, G47, V48, A49, and V57 of helix 2. Changes in the a subunit were also found in either of the transmembrane α helices, helix 5 or 6: residue L186 of helix 5 and residues W206, F209, and S214 of helix 6. These results suggest that the transmembrane helices of the c and a subunits interact and that the mutated residues are important for the structure of the F0 complex and proton translocation.


1993 ◽  
Vol 69 (03) ◽  
pp. 247-252 ◽  
Author(s):  
Shu-Wha Lin ◽  
Ming-Ching Shen

SummaryWe have characterized the genetic defects of 17 hemophilia B patients of Chinese origin by means of the polymerase chain reaction (PCR) and direct sequencing. The single-strand conformation polymorphism (SSCP) was used as an initial screening method to analyze the entire coding region and the flanking introns of each individual’s factor IX gene. The abnormal exons were subsequently amplified and the nucleotide sequence determined. Of the 17 patients studied, 16 had single point mutations and one had a gross gene deletion of exons VII and VIII of factor IX. Among these 16 factor IX variants with point mutations 13 were missense and two were nonsense mutations. The remaining one had a nucleotide deleted, resulting in frame shifting at amino acid residue 97. A total of ten novel mutations, including the one with gross gene deletion, are reported in this study which have not been described previously. Five of the remaining seven variants were missense mutations with novel amino acids substituted for residues 127, 132, 180, 207, and 215, respectively. Mutations containing different amino acid residues at those positions have been reported. The last two are variants that have already been described to contain mutations at amino acid residues 333 and 365, respectively. To evaluate the efficiency of SSCP analysis in assessing the mutated exons and to further confirm our results we sequenced the entire exons of all 17 factor IX genes. The mutations detected by SSCP method were indeed the only mutation identified in each factor IX variant. The SSCP analysis and direct sequencing have also allowed us to circumvent the difficulties of carrier determination for Chinese by direct detection of the abnormal factor IX alleles inherited by the females.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3706 ◽  
Author(s):  
Swiontek ◽  
Wasko ◽  
Fraczyk ◽  
Galecki ◽  
Kaminski ◽  
...  

In this study, N-methylated analogs of hot-spots of insulin were designed and synthesized, in the expectation that they would inhibit the aggregation of both insulin hot-spots and the entire hormone. Synthesis of insulin “amyloidogenic” analogs containing N-methylated amino acid residues was performed by microwave-assisted solid phase according to the Fmoc/tert-Bu strategy. As a coupling reagent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TosO-) was used. Three independent methods were applied in aggregation studies of the complexes of insulin with its N-methylated peptides. Additionally, circular dichroism (CD) measurements were used to confirm that aggregation processes did not occur in the presence of the N-methylated analogs of hot-spot insulin fragments, and that insulin retains its native conformation. Of the seven N-methylated analogs of the A- and B-chain hot-spots of insulin, six inhibited insulin aggregation (peptides 1 and 3–7). All tested peptides were found to have a lower ability to inhibit the aggregation of insulin hot-spots compared to the capability to inhibit native hormone aggregation.


Sign in / Sign up

Export Citation Format

Share Document