scholarly journals Chemistry of Tropical Eucheumatoids: Potential for Food and Feed Applications

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 804
Author(s):  
Andrea Ariano ◽  
Nadia Musco ◽  
Lorella Severino ◽  
Anna De Maio ◽  
Annabella Tramice ◽  
...  

The use of seaweeds as additives in animal nutrition may be a valid option to traditional feed as they represent a rich source of minerals, carbohydrates and antioxidants. The aim of this study was to analyze the chemical composition and in vitro antioxidant capacity of two tropical eucheumatoids, Kappaphycus alvarezii and Kappaphycus striatus, in Malaysian wild offshore waters. The chemical analysis was performed via inductively coupled plasma–optical emission spectroscopy for evaluating the concentration of toxic (Cd, Pb, Hg, As) and essential elements (Mn, Fe, Cu, Ni, Zn, Se); NMR spectroscopy was used for carrageenans investigation. Furthermore, the soluble and fat-soluble antioxidant capacities were determined by FRAP, DPPH and ABTS assays. The chemical analysis revealed a higher content of trace elements in K. alvarezii as compared to K. striatus, and both exhibited a high mineral content. No significant differences in metal concentrations were found between the two species. Both samples showed a mixture of prevailing κ- and t-carrageenans. Finally, the levels of soluble and fat-soluble antioxidants in K. alvarezii were significantly higher than in K. striatus. Our findings suggest that K. alvarezii could be used as a potential feed additive because of its favorable chemical and nutritional features.

Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 724-730 ◽  
Author(s):  
Qing Ge ◽  
Paul A. Cobine ◽  
Leonardo De La Fuente

Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that causes disease in many crops worldwide. Copper (Cu) is an antimicrobial agent widely used on X. fastidiosa hosts to control other diseases. Although the effects of Cu for control of foliar pathogens are well known, it is less studied on xylem-colonizing pathogens. Previous results from our group showed that low concentrations of CuSO4 increased biofilm formation, whereas high concentrations inhibited biofilm formation and growth in vitro. In this study, we conducted in planta experiments to determine the influence of Cu in X. fastidiosa infection using tobacco as a model. X. fastidiosa-infected and noninfected plants were watered with tap water or with water supplemented with 4 mM or 8 mM of CuSO4. Symptom progression was assessed, and sap and leaf ionome analysis was performed by inductively coupled plasma with optical emission spectroscopy. Cu uptake was confirmed by increased concentrations of Cu in the sap of plants treated with CuSO4-amended water. Leaf scorch symptoms in Cu-supplemented plants showed a trend toward more severe at later time points. Quantification of total and viable X. fastidiosa in planta indicated that CuSO4-amended treatments did not inhibit but slightly increased the growth of X. fastidiosa. Cu in sap was in the range of concentrations that promote X. fastidiosa biofilm formation according to our previous in vitro study. Based on these results, we proposed that the plant Cu homeostasis machinery controls the level of Cu in the xylem, preventing it from becoming elevated to a level that would lead to bacterial inhibition.


2020 ◽  
Vol 12 (3) ◽  
pp. 111-125
Author(s):  
Mohammad Rezaei ◽  
Ali Akbar Malekirad ◽  
Maryam Jabbari ◽  
Maryam Karimi-Dehkordi ◽  
Bahareh Ghasemidehkordi ◽  
...  

Fruits could contain elements in various concentrations, which can have both positive and negative impacts on human health. The concentrations of essential elements, including Iron (Fe), Copper (Cu), Zinc (Zn), Manganese (Mn), and Chromium (Cr) in five types of fruits, namely, peach, apple, grape, nectarine, and golden plum, and the soil and irrigation water from six industrial zones of Markazi province, Iran, were evaluated using an inductively coupled plasma-optical emission spectroscopy (ICP-OES) technique. The noncarcinogenic risk was assessed by determining the target hazard quotient and the Monte Carlo simulation model. The highest concentrations of Fe, Mn, and Cr were observed in golden plum, while the highest concentrations of Cu and Zn were noted in grape and apple, respectively. The order of the mean of concentrations of elements in the soil and water samples were Fe > Mn > Zn > Cu > Cr. The transfer factor (TF) results indicate that studied fruits could not absorb a high amount of these elements from the soil (TF < 1). Target hazard quotient values of these elements in both adults and chil-dren were ranked as Cr > Cur > Fe > Mn > Zn. The target hazard quotient was 95% and total target hazard quo-tient was <1, meaning that the consumption of fruits is safe for consumers.


2018 ◽  
Vol 81 (10) ◽  
pp. 1622-1626 ◽  
Author(s):  
ENRIQUE LOZANO-BILBAO ◽  
SONGLIAN MÉNDEZ ◽  
GONZALO LOZANO ◽  
ARTURO HARDISSON ◽  
DAILOS GONZÁLEZ-WELLER ◽  
...  

ABSTRACT The study has been conducted with inductively coupled plasma optical emission spectrometry to determine the content of toxic heavy metals, macroelements, and essential elements in two species of bivalves of commercial interest in the Canary Islands: the Mediterranean mussel (Mytillus galloprovincialis, Lamarck 1819) and the razor clam (Ensis directus, Conrad 1883). The study included 40 samples corresponding to 20 specimens of each species acquired from fishmongers on the island of Tenerife. E. directus had higher levels of metals, except for B, Cd, Na, and Zn (0.98, 0.02, 2,006.93, and 15.07 mg/kg, respectively) compared with those in M. galloprovincialis, B, Cd, Na, and Zn (2.67, 0.12, 2,267.7, and 22.27 mg/kg, respectively). In both bivalve molluscs, the maximum limits established by European legislation on food for human consumption were not exceeded. Likewise, the estimated daily intakes for the toxic metals Pb and Cd were below the admissible daily intakes.


Sign in / Sign up

Export Citation Format

Share Document