scholarly journals Copper Supplementation in Watering Solution Reaches the Xylem But Does Not Protect Tobacco Plants Against Xylella fastidiosa Infection

Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 724-730 ◽  
Author(s):  
Qing Ge ◽  
Paul A. Cobine ◽  
Leonardo De La Fuente

Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that causes disease in many crops worldwide. Copper (Cu) is an antimicrobial agent widely used on X. fastidiosa hosts to control other diseases. Although the effects of Cu for control of foliar pathogens are well known, it is less studied on xylem-colonizing pathogens. Previous results from our group showed that low concentrations of CuSO4 increased biofilm formation, whereas high concentrations inhibited biofilm formation and growth in vitro. In this study, we conducted in planta experiments to determine the influence of Cu in X. fastidiosa infection using tobacco as a model. X. fastidiosa-infected and noninfected plants were watered with tap water or with water supplemented with 4 mM or 8 mM of CuSO4. Symptom progression was assessed, and sap and leaf ionome analysis was performed by inductively coupled plasma with optical emission spectroscopy. Cu uptake was confirmed by increased concentrations of Cu in the sap of plants treated with CuSO4-amended water. Leaf scorch symptoms in Cu-supplemented plants showed a trend toward more severe at later time points. Quantification of total and viable X. fastidiosa in planta indicated that CuSO4-amended treatments did not inhibit but slightly increased the growth of X. fastidiosa. Cu in sap was in the range of concentrations that promote X. fastidiosa biofilm formation according to our previous in vitro study. Based on these results, we proposed that the plant Cu homeostasis machinery controls the level of Cu in the xylem, preventing it from becoming elevated to a level that would lead to bacterial inhibition.

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Fadi N. Barrak ◽  
Siwei Li ◽  
Albert M. Muntane ◽  
Julian R. Jones

Abstract Background With increasing numbers of dental implants placed annually, complications such as peri-implantitis and the subsequent periprosthetic osteolysis are becoming a major concern. Implantoplasty, a commonly used treatment of peri-implantitis, aims to remove plaque from exposed implants and reduce future microbial adhesion and colonisation by mechanically modifying the implant surface topography, delaying re-infection/colonisation of the site. This in vitro study aims to investigate the release of particles from dental implants and their effects on human gingival fibroblasts (HGFs), following an in vitro mock implantoplasty procedure with a diamond burr. Materials and methods Commercially available implants made from grade 4 (commercially pure, CP) titanium (G4) and grade 5 Ti-6Al-4 V titanium (G5) alloy implants were investigated. Implant particle compositions were quantified by inductively coupled plasma optical emission spectrometer (ICP-OES) following acid digestion. HGFs were cultured in presence of implant particles, and viability was determined using a metabolic activity assay. Results Microparticles and nanoparticles were released from both G4 and G5 implants following the mock implantoplasty procedure. A small amount of vanadium ions were released from G5 particles following immersion in both simulated body fluid and cell culture medium, resulting in significantly reduced viability of HGFs after 10 days of culture. Conclusion There is a need for careful evaluation of the materials used in dental implants and the potential risks of the individual constituents of any alloy. The potential cytotoxicity of G5 titanium alloy particles should be considered when choosing a device for dental implants. Additionally, regardless of implant material, the implantoplasty procedure can release nanometre-sized particles, the full systemic effect of which is not fully understood. As such, authors do not recommend implantoplasty for the treatment of peri-implantitis.


2021 ◽  
pp. 232020682110157
Author(s):  
Abdolrasoul Rangrazi ◽  
Amirtaher Mirmortazavi ◽  
Reyhaneh Imani ◽  
Davood Nodehi

Aim: The aim of this study was to evaluate the effect of the ozonated water on corrosion of a cobalt–chromium (Co-Cr)-based alloy, which is applied for the fabrication of metal frameworks of removable partial dentures. Materials and Methods: In this in vitro study, a total of 30 disk-shaped samples of a Co-Cr alloy were papered and randomly divided into two groups of 15 specimens. In group 1 (control), the specimens were stored in distilled water (DW), and in group 2, the specimens were stored in ozonated water. Around 90 immersions were performed, and the weight change of each specimen was determined. The ion release was analyzed using an inductively coupled plasma-optical emission spectrophotometer. The potentiodynamic polarization test was performed for each group to assess the corrosion resistance of the Co-Cr alloy. The statistical analysis was performed using SPSS version 22. Data were analyzed by independent samples’ t-test. Results: The results showed no significant difference between the weight changes of the two groups. The test using an inductively coupled plasma-optical emission spectrophotometer demonstrated no significant difference between the groups in Co and Cr ions release. In the potentiodynamic polarization test, both groups present similar corrosion behavior, and ozonated water has no deleterious effect on the corrosion resistance and passive range of the Co-Cr alloy compared to DW. Conclusion: As compared to DW, ozonated water has no significant deleterious effect on the corrosion resistance of the Co-Cr frameworks and can be used for cleaning the removable partial dentures.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pat Sooksaen ◽  
Natyada Pengsuwan ◽  
Sittipong Karawatthanaworrakul ◽  
Surasak Pianpraditkul

This research discussed the fabrication, characterization, and in vitro study of composites based on the mixture of hydroxyapatite powder and apatite-wollastonite (AW) based glass. AW based glass was prepared from the SiO2-CaO-MgO-P2O5-CaF2glass system. This study focuses on the effect of composition and sintering temperature that influences the properties of these composites. Microstructural study revealed the formation of apatite layer on the composite surfaces when immersed in simulated body fluid (SBF) solution at 37°C. Composites containing ≥50 wt% AW based glass showed good bioactivity after 7 days of immersion in the SBF. A porous calcium phosphate (potentially hydroxycarbonate apatite, HCA) layer formed at the SBF-composite interface and the layer became denser at longer soaking period, for periods ranging from 7 to 28 days. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analysis showed that early stage of soaking occurred with the release of Ca and Si ions from the composites and the decrease of P ions with slow exchange rate.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 804
Author(s):  
Andrea Ariano ◽  
Nadia Musco ◽  
Lorella Severino ◽  
Anna De Maio ◽  
Annabella Tramice ◽  
...  

The use of seaweeds as additives in animal nutrition may be a valid option to traditional feed as they represent a rich source of minerals, carbohydrates and antioxidants. The aim of this study was to analyze the chemical composition and in vitro antioxidant capacity of two tropical eucheumatoids, Kappaphycus alvarezii and Kappaphycus striatus, in Malaysian wild offshore waters. The chemical analysis was performed via inductively coupled plasma–optical emission spectroscopy for evaluating the concentration of toxic (Cd, Pb, Hg, As) and essential elements (Mn, Fe, Cu, Ni, Zn, Se); NMR spectroscopy was used for carrageenans investigation. Furthermore, the soluble and fat-soluble antioxidant capacities were determined by FRAP, DPPH and ABTS assays. The chemical analysis revealed a higher content of trace elements in K. alvarezii as compared to K. striatus, and both exhibited a high mineral content. No significant differences in metal concentrations were found between the two species. Both samples showed a mixture of prevailing κ- and t-carrageenans. Finally, the levels of soluble and fat-soluble antioxidants in K. alvarezii were significantly higher than in K. striatus. Our findings suggest that K. alvarezii could be used as a potential feed additive because of its favorable chemical and nutritional features.


Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 647
Author(s):  
Mengqi Qian ◽  
Yuwei Zuo ◽  
Zhihao Chen ◽  
Xiaoshuang Yin ◽  
Ying Liu ◽  
...  

The effect of NaCl at extremely high concentrations from 3.5 to 14 wt. % on the crystallization of CaCO3 was investigated in depth. The static test experiment verified that the Ca2+ retention efficiency (η) of NaCl on CaCO3 scale increased from 31.06% (3.5 wt. %) to 41.56% (14 wt. %). Based on the calculation of supersaturation rations, the high concentration of NaCl could reduce the activity coefficients of [Ca2+] and [CO32−], thus reducing the actual concentration of CaCO3. The CaCO3 deposition rate constants (k) showed that NaCl slowed down the rate of CaCO3 crystallization. The X–ray diffraction (XRD) testing disclosed that the growth of (1 0 4) and (1 1 0) faces from calcite was impeded, while the formation of (1 1 1) face from aragonite was induced by the increasing concentration of NaCl. The inductively coupled plasma optical emission spectrometry (ICP–OES) results indicated that Na+ could be doped into CaCO3, leading to the one–dimensional crystal growth. It was further proved that NaCl heightens the efficiency of the typical phosphate inhibitors (2–phosphonobutane–1,2,4–tricarboxylic acid (PBTCA) and 1–hydroxyethane–1,1–diphosphonic acid (HEDP)) on prohibiting the scale of CaCO3.


2021 ◽  
Vol 13 (14) ◽  
pp. 7818
Author(s):  
Kaoutar El Handi ◽  
Majida Hafidi ◽  
Khaoula Habbadi ◽  
Maroun El Moujabber ◽  
Mohamed Ouzine ◽  
...  

Morocco belongs to the countries ranked at a high-risk level for entry, establishment, and spread of Xylella fastidiosa, which has recently re-emerged as a plant pathogen of global importance causing olive quick decline syndrome (OQDS). Symptomatic infection by X. fastidiosa leads to devastating diseases and important economic losses. To prevent such losses and damages, countries without current outbreaks like Morocco need to first understand their host plant responses to X. fastidiosa. The assessment of the macro and micro-elements content (ionome) in leaves can give basic and useful information along with being a powerful tool for the sustainable management of diseases caused by this devastating pathogen. Herein, we compare the leaf ionome of four important autochthonous Moroccan olive cultivars (‘Picholine Marocaine’, ‘Haouzia’, ‘Menara’, and ‘Meslalla’), and eight Mediterranean varieties introduced in Morocco (‘Arbequina’, ‘Arbosana’, ‘Leccino’, ‘Ogliarola salentina’, ‘Cellina di Nardo’, ‘Frantoio’, ‘Leucocarpa’, and ‘Picholine de Languedoc’), to develop hypotheses related to the resistance or susceptibility of the Moroccan olive trees to X. fastidiosa infection. Leaf ionomes, mainly Ca, Cu, Fe, Mg, Mn, Na, Zn, and P, were determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). These varieties were also screened for their total phenolics and flavonoids content. Data were then involved in a comparative scheme to determine the plasticity of the pathogen. Our results showed that the varieties ‘Leccino’, ’Arbosana’, ‘Arbequina’ consistently contained higher Mn, Cu, and Zn and lower Ca and Na levels compared with the higher pathogen-sensitive ‘Ogliarola salentina’ and ‘Cellina di Nardò’. Our findings suggest that ‘Arbozana’, ‘Arbiquina’, ‘Menara’, and ‘Haouzia’ may tolerate the infection by X. fastidiosa to varying degrees, provides additional support for ‘Leccino’ having resistance to X. fastidiosa, and suggests that both ‘Ogliarola salentina’ and ‘Cellina di Nardö’ are likely sensitive to X. fastidiosa infection.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 272 ◽  
Author(s):  
Giusy D’Attoma ◽  
Massimiliano Morelli ◽  
Pasquale Saldarelli ◽  
Maria Saponari ◽  
Annalisa Giampetruzzi ◽  
...  

Olive quick decline syndrome (OQDS) is a devastating disease of olive trees in the Salento region, Italy. This disease is caused by the bacterium Xylella fastidiosa, which is widespread in the outbreak area; however, the “Leccino” variety of olives has proven to be resistant with fewer symptoms and lower bacterial populations than the “Ogliarola salentina” variety. We completed an empirical study to determine the mineral and trace element contents (viz; ionome) of leaves from infected trees comparing the two varieties, to develop hypotheses related to the resistance of Leccino trees to X. fastidiosa infection. All samples from both cultivars tested were infected by X. fastidiosa, even if leaves were asymptomatic at the time of collection, due to the high disease pressure in the outbreak area and the long incubation period of this disease. Leaves were binned for the analysis by variety, field location, and infected symptomatic and infected asymptomatic status by visual inspection. The ionome of leaf samples was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES) and compared with each other. These analyses showed that Leccino variety consistently contained higher manganese (Mn) levels compared with Ogliarola salentina, and these levels were higher in both infected asymptomatic and infected symptomatic leaves. Infected asymptomatic and infected symptomatic leaves within a host genotype also showed differences in the ionome, particularly a higher concentration of calcium (Ca) and Mn levels in the Leccino cultivar, and sodium (Na) in both varieties. We hypothesize that the ionome differences in the two varieties contribute to protection against disease caused by X. fastidiosa infection.


Sign in / Sign up

Export Citation Format

Share Document