scholarly journals Engineering the Vasculature of Stem-Cell-Derived Liver Organoids

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 966
Author(s):  
Xv Zhang ◽  
Liling Tang ◽  
Qian Yi

The vasculature of stem-cell-derived liver organoids can be engineered using methods that recapitulate embryonic liver development. Hepatic organoids with a vascular network offer great application prospects for drug screening, disease modeling, and therapeutics. However, the application of stem cell-derived organoids is hindered by insufficient vascularization and maturation. Here, we review different theories about the origin of hepatic cells and the morphogenesis of hepatic vessels to provide potential approaches for organoid generation. We also review the main protocols for generating vascularized liver organoids from stem cells and consider their potential and limitations in the generation of vascularized liver organoids.

2019 ◽  
Vol 77 (12) ◽  
pp. 2257-2273 ◽  
Author(s):  
Marije Koning ◽  
Cathelijne W. van den Berg ◽  
Ton J. Rabelink

AbstractKidney organoids can be generated from human pluripotent stem cells (PSCs) using protocols that resemble the embryonic development of the kidney. The renal structures thus generated offer great potential for disease modeling, drug screening, and possibly future therapeutic application. At the same time, use of these PSC-derived organoids is hampered by lack of maturation and off-target differentiation. Here, we review the main protocols for the generation of kidney organoids from human-induced PSCs, discussing their advantages and limitations. In particular, we will focus on the vascularization of the kidney organoids, which appears to be one of the critical factors to achieve maturation and functionality of the organoids.


2011 ◽  
Vol 2 (2) ◽  
Author(s):  
Nina Kosi ◽  
Dinko Mitrečić

AbstractNeurological diseases are recognized as one of the most significant burdens of the modern society. Therefore, a new therapeutic approach applicable to nervous system represents priority of today’s medicine. A rapid development of stem cell technology in the last two decades introduced a possibility to regenerate disease-affected nervous tissue. In this vein, stem cells are envisioned as a replacement for lost neurons, a source of trophic support, a therapeutic vehicle, and as a tool for in vitro modeling. This article reviews the current concepts in stem cell-based therapy of neurological diseases and comments ongoing efforts aiming at clinical translation.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1643
Author(s):  
Yohei Hayashi ◽  
Evgeniia Borisova

In this Special Issue of Biomedicines on disease-focused research using stem cells, we cover the latest conceptual and practical advances in stem cell-based therapies and disease modeling [...]


2020 ◽  
Vol 21 (6) ◽  
pp. 2239 ◽  
Author(s):  
Maria Csobonyeiova ◽  
Stefan Polak ◽  
Lubos Danisovic

Huntington’s disease (HD) is an inherited, autosomal dominant, degenerative disease characterized by involuntary movements, cognitive decline, and behavioral impairment ending in death. HD is caused by an expansion in the number of CAG repeats in the huntingtin gene on chromosome 4. To date, no effective therapy for preventing the onset or progression of the disease has been found, and many symptoms do not respond to pharmacologic treatment. However, recent results of pre-clinical trials suggest a beneficial effect of stem-cell-based therapy. Induced pluripotent stem cells (iPSCs) represent an unlimited cell source and are the most suitable among the various types of autologous stem cells due to their patient specificity and ability to differentiate into a variety of cell types both in vitro and in vivo. Furthermore, the cultivation of iPSC-derived neural cells offers the possibility of studying the etiopathology of neurodegenerative diseases, such as HD. Moreover, differentiated neural cells can organize into three-dimensional (3D) organoids, mimicking the complex architecture of the brain. In this article, we present a comprehensive review of recent HD models, the methods for differentiating HD–iPSCs into the desired neural cell types, and the progress in gene editing techniques leading toward stem-cell-based therapy.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Arquimedes Cheffer ◽  
Lea Jessica Flitsch ◽  
Tamara Krutenko ◽  
Pascal Röderer ◽  
Liubov Sokhranyaeva ◽  
...  

AbstractThe controlled differentiation of pluripotent stem cells (PSCs) into neurons and glia offers a unique opportunity to study early stages of human central nervous system development under controlled conditions in vitro. With the advent of cell reprogramming and the possibility to generate induced pluripotent stem cells (iPSCs) from any individual in a scalable manner, these studies can be extended to a disease- and patient-specific level. Autism spectrum disorder (ASD) is considered a neurodevelopmental disorder, with substantial evidence pointing to early alterations in neurogenesis and network formation as key pathogenic drivers. For that reason, ASD represents an ideal candidate for stem cell-based disease modeling. Here, we provide a concise review on recent advances in the field of human iPSC-based modeling of syndromic and non-syndromic forms of ASD, with a particular focus on studies addressing neuronal dysfunction and altered connectivity. We further discuss recent efforts to translate stem cell-based disease modeling to 3D via brain organoid and cell transplantation approaches, which enable the investigation of disease mechanisms in a tissue-like context. Finally, we describe advanced tools facilitating the assessment of altered neuronal function, comment on the relevance of iPSC-based models for the assessment of pharmaceutical therapies and outline potential future routes in stem cell-based ASD research.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Aoife Gowran ◽  
Marco Rasponi ◽  
Roberta Visone ◽  
Patrizia Nigro ◽  
Gianluca L. Perrucci ◽  
...  

A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy.


2013 ◽  
Vol 45 (23) ◽  
pp. 1123-1135 ◽  
Author(s):  
David A. Brafman

Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.


Author(s):  
Andre M. C. Meneses ◽  
Kerstin Schneeberger ◽  
Hedwig S. Kruitwagen ◽  
Louis C. Penning ◽  
Frank G. van Steenbeek ◽  
...  

Recent technical advances in the stem cell field have enabled the in vitro generation of complex structures resembling whole organs termed organoids. Most of these approaches employ culture systems that allow stem cell-derived or tissue progenitor cells to self-organize into three-dimensional (3D)-structures. Since organoids can be grown from various species, organs and from patient-derived induced pluripotent stem cells, they create significant prospects for modelling development and diseases, for toxicology and drug discovery studies, and in the field of regenerative medicine. Here, we report on intestinal stem cells, organoid culture, organoid disease modeling, transplantation, current and future uses of this exciting new insight model to veterinary medicine field.


Sign in / Sign up

Export Citation Format

Share Document