scholarly journals Bucky Ball Is a Novel Zebrafish Vasa ATPase Activator

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1507
Author(s):  
Roshan Priyarangana Perera ◽  
Alaa Shaikhqasem ◽  
Nadia Rostam ◽  
Achim Dickmanns ◽  
Ralf Ficner ◽  
...  

Many multicellular organisms specify germ cells during early embryogenesis by the inheritance of ribonucleoprotein (RNP) granules known as germplasm. However, the role of complex interactions of RNP granules during germ cell specification remains elusive. This study characterizes the interaction of RNP granules, Buc, and zebrafish Vasa (zfVasa) during germ cell specification. We identify a novel zfVasa-binding motif (Buc-VBM) in Buc and a Buc-binding motif (zfVasa-BBM) in zfVasa. Moreover, we show that Buc and zfVasa directly bind in vitro and that this interaction is independent of the RNA. Our circular dichroism spectroscopy data reveal that the intrinsically disordered Buc-VBM peptide forms alpha-helices in the presence of the solvent trifluoroethanol. Intriguingly, we further demonstrate that Buc-VBM enhances zfVasa ATPase activity, thereby annotating the first biochemical function of Buc as a zfVasa ATPase activator. Collectively, these results propose a model in which the activity of zfVasa is a central regulator of primordial germ cell (PGC) formation and is tightly controlled by the germplasm organizer Buc.

2021 ◽  
Author(s):  
Matus Vojtek ◽  
Ian Chambers

Retroelement silencing factor 1 (Resf1) interacts with the key regulators of mouse embryonic stem cells (ESCs) Oct4 and Nanog, and its absence results in sterility of mice. However, the function of Resf1 in ESCs and germ line specification is poorly understood. In this study, we used Resf1 knockout cell lines to determine the requirements of RESF1 for ESCs self-renewal and for in vitro specification of ESCs into primordial germ cell-like cells (PGCLCs). We found that deletion of Resf1 in ESCs cultured in serum and LIF reduces self-renewal potential whereas episomal expression of RESF1 has a modest positive effect on ESC self-renewal. In addition, RESF1 is not required for the capacity of NANOG and its downstream target ESRRB to drive self-renewal in the absence of LIF. However, Resf1 deletion reduces efficiency of PGCLC differentiation in vitro. These results identify Resf1 as a novel player in the regulation of pluripotent stem cells and germ cell specification.


2016 ◽  
Vol 39 (1) ◽  
pp. 104-115 ◽  
Author(s):  
Ferdinand von Meyenn ◽  
Rebecca V. Berrens ◽  
Simon Andrews ◽  
Fátima Santos ◽  
Amanda J. Collier ◽  
...  

2021 ◽  
Vol 4 (12) ◽  
pp. e202101190
Author(s):  
Matúš Vojtek ◽  
Ian Chambers

Retroelement silencing factor 1 (RESF1) interacts with the key regulators of mouse embryonic stem cells (ESCs) OCT4 and NANOG, and its absence results in sterility of mice. However, the function of RESF1 in ESCs and germline specification is poorly understood. In this study, we used Resf1 knockout cell lines to determine the requirements of RESF1 for ESC self-renewal and for in vitro specification of ESCs into primordial germ cell-like cells (PGCLCs). We found that deletion of Resf1 in ESCs cultured in serum and LIF reduces self-renewal potential, whereas episomal expression of RESF1 has a modest positive effect on ESC self-renewal. In addition, RESF1 is not required for the capacity of NANOG and its downstream target ESRRB to drive self-renewal in the absence of LIF. However, Resf1 deletion reduces the efficiency of PGCLC differentiation in vitro. These results identify Resf1 as a novel player in the regulation of pluripotent stem cells and germ cell specification.


2017 ◽  
Vol 65 (3) ◽  
pp. 460-475.e6 ◽  
Author(s):  
Deqing Hu ◽  
Xin Gao ◽  
Kaixiang Cao ◽  
Marc A. Morgan ◽  
Gloria Mas ◽  
...  

Stem Cells ◽  
2014 ◽  
Vol 33 (1) ◽  
pp. 289-300 ◽  
Author(s):  
Yasuka L. Yamaguchi ◽  
Satomi S. Tanaka ◽  
Maho Kumagai ◽  
Yuka Fujimoto ◽  
Takeshi Terabayashi ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3099
Author(s):  
Aline Fernanda de Souza ◽  
Fabiana Fernandes Bressan ◽  
Naira Caroline Godoy Pieri ◽  
Ramon Cesar Botigelli ◽  
Tamas Revay ◽  
...  

Turner syndrome (TS) is a genetic disorder in females with X Chromosome monosomy associated with highly variable clinical features, including premature primary gonadal failure leading to ovarian dysfunction and infertility. The mechanism of development of primordial germ cells (PGCs) and their connection with ovarian failure in TS is poorly understood. An in vitro model of PGCs from TS would be beneficial for investigating genetic and epigenetic factors that influence germ cell specification. Here we investigated the potential of reprogramming peripheral mononuclear blood cells from TS women (PBMCs-TS) into iPSCs following in vitro differentiation in hPGCLCs. All hiPSCs-TS lines demonstrated pluripotency state and were capable of differentiation into three embryonic layers (ectoderm, endoderm, and mesoderm). The PGCLCs-TS recapitulated the initial germline development period regarding transcripts and protein marks, including the epigenetic profile. Overall, our results highlighted the feasibility of producing in vitro models to help the understanding of the mechanisms associated with germ cell formation in TS.


Sign in / Sign up

Export Citation Format

Share Document