scholarly journals Generation of Primordial Germ Cell-like Cells from iPSCs Derived from Turner Syndrome Patients

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3099
Author(s):  
Aline Fernanda de Souza ◽  
Fabiana Fernandes Bressan ◽  
Naira Caroline Godoy Pieri ◽  
Ramon Cesar Botigelli ◽  
Tamas Revay ◽  
...  

Turner syndrome (TS) is a genetic disorder in females with X Chromosome monosomy associated with highly variable clinical features, including premature primary gonadal failure leading to ovarian dysfunction and infertility. The mechanism of development of primordial germ cells (PGCs) and their connection with ovarian failure in TS is poorly understood. An in vitro model of PGCs from TS would be beneficial for investigating genetic and epigenetic factors that influence germ cell specification. Here we investigated the potential of reprogramming peripheral mononuclear blood cells from TS women (PBMCs-TS) into iPSCs following in vitro differentiation in hPGCLCs. All hiPSCs-TS lines demonstrated pluripotency state and were capable of differentiation into three embryonic layers (ectoderm, endoderm, and mesoderm). The PGCLCs-TS recapitulated the initial germline development period regarding transcripts and protein marks, including the epigenetic profile. Overall, our results highlighted the feasibility of producing in vitro models to help the understanding of the mechanisms associated with germ cell formation in TS.

2006 ◽  
Vol 18 (2) ◽  
pp. 211
Author(s):  
T. Teramura ◽  
N. Kawata ◽  
N. Fujinami ◽  
M. Takenoshita ◽  
N. Sagawa ◽  
...  

Embryonic stem cells (ESCs) of nonhuman primate are important tools for human gametogenesis research. Generally, ESCs, embryos, and fetuses of nonhuman primates are similar to these of human. Recently, germ cell formation of mouse ESCs in vitro has been reported. In this study, we established new cynomolgus monkey ES (cyES) lines and determined germinal competency by assessing expression of mRNA markers. CyES lines were established using blastocysts produced by intracytoplasmic sperm injection (ICSI). For inducing super-ovulation, females were treated with 25 IU/kg pregnant mare serum gonadotropin (PMSG) once a day for 9 days, followed by 400 IU/kg hCG. Oocytes were collected 40 h after injection of hCG. After sperm injection, embryos were cultured in mCMRL medium to the blastocyst stage. For ES line establishment, inner cell masses (ICMs) were isolated by immunosurgery. ESC colonies emerged at about 10 days after ICM plating; three cyES cell lines were successfully obtained (3/11; 27.3%). We characterized these lines by immunocytochemistry for Oct-3/4, SSEA-3, and SSEA-4, which are diagnostic markers for primate ESCs, and by assay for alkaline phosphatase (ALP) activity. All cell lines expressed Oct-3/4, SSEA-4 and ALP activity. The previously reported SSEA-3 weak expression in cyES cells was not observed. These lines differentiated spontaneously when they were replaced in non-adherent culture (embryoid body: EB) or injected into SCID mice subcutaneously. To assess germ cell competency in vitro, we analyzed for the presence of vasa mRNA which shows a restricted expression pattern to germ cell formation, and DMC1 and SYCP1 which show specific existence on synaptonema complex in meiosis. Detection of these germ cell markers was performed by RT-PCR with total cDNA from ESCs and EBs. Nanog mRNA was detected only in ESCs. Oct-4 was detected in gonadal tissue of both sexes, ESCs, and EBs. Vasa was expressed in testis, but not in ESCs or somatic cells. Interestingly, we recognized weak expression of Vasa in Day 12-16 EBs. DMC1 and SYCP1 as meiosis markers were not detected. Because Oct-4 and Vasa mRNA are transcribed simultaneously, similar to that in the early part of gametogenesis such as the latter period of primordial germ cell (PGC) migration, PGC formation in cynomolgus EBs could occurr as in some cases of mouse or human EBs previously reported. Although detailed properties such as the functions of these Vasa-positive cells have not been confirmed, these results demonstrate that cyES cells obtained in the current study might contribute to putative germ cells in vitro by differentiating to EBs. This study was supported by a Grant-in-Aid for the 21st Century COE Program of the Japan Mext and by a grant for the Wakayama Prefecture Collaboration of Regional Entities for the Advancement of Technology Excellence of the JST.


2016 ◽  
Vol 28 (2) ◽  
pp. 207
Author(s):  
J. Galiguis ◽  
C. E. Pope ◽  
C. Dumas ◽  
G. Wang ◽  
R. A. MacLean ◽  
...  

As precursors to germline stem cells and gametes, there are many potential applications for primordial germ cells (PGC). Primordial germ cell-like cells have been generated from mouse embryonic stem cells and induced pluripotent stem cells, which subsequently were used to produce functional spermatozoa, oocytes, and healthy offspring (Hayashi et al. 2012 Science 338(6109), 971–975). Applying this approach to generate sperm and oocytes of endangered species is an appealing prospect. Detection of molecular markers associated with PGC is essential to optimizing the process of PGC induction. In the current study, in vitro-derived domestic cat embryos were assessed at various developmental stages to characterise the expression of markers related to the specification process of cat PGC. In vivo-matured, IVF oocytes were cultured until Days 7, 9, and 12 post-insemination. Then, embryos were assessed by RT-qPCR to determine relative transcript abundance of the pluripotency markers NANOG, POU5F1, and SOX2; the epiblast marker DNMT3B; the primitive endoderm marker GATA4; the PGC marker PRDM14; and the germ cell marker VASA; RPS19 was used as the internal reference gene. To validate the qPCR results, fibroblasts served as the negative control cells, whereas spermatogonial stem cells (SSC) served as the positive control cells for GATA4, PRDM14, and VASA. Total mRNA were isolated using the Cells-to-cDNA™ II Kit (Ambion/Thermo Fisher Scientific, Waltham, MA, USA) from either pools of 2 to 6 embryos or ~25 000 fibroblasts/SSC. A minimum of 2 biological replicates for each sample type was analysed, with transcript abundance detected in 2 technical replicates by SYBR Green chemistry. Student’s t-tests were performed on the ΔCts for statistical analysis. PRDM14, specific to the germ cell lineage, was detected as early as Day 7, suggesting the presence of PGC precursor cells. Compared with their levels at Day 7, PRDM14 expression was 0.34-fold lower in SSC (P < 0.05), whereas expression of VASA and GATA4 were 1964-fold and 144-fold higher, respectively (P < 0.05). This seems to emphasise the relative importance of PRDM14 in pre-germ cell stages. In general, all genes analysed were up-regulated from Day 7 to Day 9. This up-regulation was statistically significant for SOX2 and GATA4 (P < 0.05). Relative to that at Day 9, all transcripts were relatively less abundant at Day 12 (P < 0.05 for NANOG, POU5F1, SOX2, DNMT3B, and PRDM14). The data suggest that PGC specification takes place near Day 9, with peak specification activity concluding by Day 12. Although much needs be explored about PGC specification in the cat before applying induction and in vitro germ cell production techniques, these findings represent the first step towards a new potential strategy for preserving endangered and threatened felids.


2021 ◽  
Author(s):  
Matus Vojtek ◽  
Ian Chambers

Retroelement silencing factor 1 (Resf1) interacts with the key regulators of mouse embryonic stem cells (ESCs) Oct4 and Nanog, and its absence results in sterility of mice. However, the function of Resf1 in ESCs and germ line specification is poorly understood. In this study, we used Resf1 knockout cell lines to determine the requirements of RESF1 for ESCs self-renewal and for in vitro specification of ESCs into primordial germ cell-like cells (PGCLCs). We found that deletion of Resf1 in ESCs cultured in serum and LIF reduces self-renewal potential whereas episomal expression of RESF1 has a modest positive effect on ESC self-renewal. In addition, RESF1 is not required for the capacity of NANOG and its downstream target ESRRB to drive self-renewal in the absence of LIF. However, Resf1 deletion reduces efficiency of PGCLC differentiation in vitro. These results identify Resf1 as a novel player in the regulation of pluripotent stem cells and germ cell specification.


2019 ◽  
Vol 4 ◽  
pp. 122
Author(s):  
Merrick Pierson Smela ◽  
Anastasiya Sybirna ◽  
Frederick C.K. Wong ◽  
M. Azim Surani

Background: Potentially novel regulators of early human germline development have been identified recently, including SOX15 and SOX17, both of which show specific expression in human primordial germ cells. SOX17 is now known to be a critical specifier of human germ cell identity. There have been suggestions, as yet without evidence, that SOX15 might also play a prominent role. The early human germline is inaccessible for direct study, but an in vitro model of human primordial germ cell-like cell (hPGCLC) specification from human embryonic stem cells (hESCs) has been developed. This enables mechanistic study of human germ cell specification using genetic tools to manipulate the levels of SOX15 and SOX17 proteins to explore their roles in hPGCLC specification. Methods: SOX15 and SOX17 proteins were depleted during hPGCLC specification from hESCs using the auxin-inducible degron system, combined with a fluorescent reporter for tracking protein levels. Additionally, SOX15 protein was overexpressed using the ProteoTuner system. Protein-level expression changes were confirmed by immunofluorescence. The impact on hPGCLC specification efficiency was determined by flow cytometry at various time points. qPCR experiments were performed to determine some transcriptional effects of SOX15 perturbations. Results: We observed specific SOX15 expression in hPGCLCs by using immunofluorescence and flow cytometry analysis. Depletion of SOX15 had no significant effect on hPGCLC specification efficiency on day 4 after induction, but there was a significant and progressive decrease in hPGCLCs on days 6 and 8. By contrast, depletion of SOX17 completely abrogated hPGCLC specification. Furthermore, SOX15 overexpression resulted in a significant increase in hPGCLC fraction on day 8. qPCR analysis revealed a possible role for the germ cell and pluripotency regulator PRDM14 in compensating for changes to SOX15 protein levels. Conclusions: SOX17 is essential for hPGCLC specification, yet SOX15 is dispensable. However, SOX15 may have a role in maintaining germ cell identity.


2020 ◽  
Author(s):  
Qisheng Zuo ◽  
Yani Zhang ◽  
Guohong Chen ◽  
Bichun Li

Abstract (Background) The unique developmental characteristics of bird primordial germ cells (PGC) have enabled genetic engineering–based breeding and restoration of endangered birds via transplantation in vitro. However, the limited number of PGC has limited their application. Thus, there is an urgent need to elucidate the mechanism of PGC formation in vitro to enhance its efficiency. (Results) Here, we confirmed that activation of BMP4 and Wnt signaling (Wnt5A/β-catenin/TCF7L2) is critical for PGC formation via RNA-seq (ESCs, PGC and SSCs) and in vitro induction models. Wnt signaling activated via BMP4 in turn activates transcription of Lin28A by inducing β-catenin to compete with LSD1 for binding to the transcription factor TCF7L2, causing LSD1 to dissociate from the Lin28A promoter and enhanced H3K4me2 methylation in this region. Lin28A promotes PGC formation by inhibiting gga-let7a-3p maturation to initiate Blimp1 expression. Interestingly, expression of Blimp1 helped sustain Wnt5A expression by preventing LSD1 binding to the Wnt5A promoter. We thus elucidated a positive feedback pathway involving Wnt-Lin28-Blimp1-Wnt, with BMP4 functioning as an activator that ensures PGC formation. (Conclusion) In summary, our study clarified the molecular mechanism by which BMP4 and Wnt signaling regulate PGC formation via a positive feedback system. Our data provide both a theoretical and technical basis for studies aimed at enhancing the generation of PGC in vitro.


2016 ◽  
Vol 39 (1) ◽  
pp. 104-115 ◽  
Author(s):  
Ferdinand von Meyenn ◽  
Rebecca V. Berrens ◽  
Simon Andrews ◽  
Fátima Santos ◽  
Amanda J. Collier ◽  
...  

Reproduction ◽  
2005 ◽  
Vol 129 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Cinzia Allegrucci ◽  
Alexandra Thurston ◽  
Emma Lucas ◽  
Lorraine Young

Epigenetic processes affect three stages of germline development, namely (1) specification and formation of primordial germ cells and their germline derivatives through lineage-specific epigenetic modifications, in the same manner as other embryonic lineages are formed, (2) a largely genome-wide erasure and re-establishment of germline-specific epigenetic modifications that only occurs in the embryonic primordial germ cell lineage, followed by re-establishment of sex-specific patterns during gametogenesis, and (3) differential epigenetic modifications to the mature male and female gamete genomes shortly after fertilisation. This review will detail current knowledge of these three processes both at the genome-wide level and at specific imprinted loci. The consequences of epigenetic perturbation are discussed and newin vitromodels which may allow further understanding of a difficult developmental period to study, especially in the human, are highlighted.


Sign in / Sign up

Export Citation Format

Share Document