scholarly journals BIOFACQUIM: A Mexican Compound Database of Natural Products

Biomolecules ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
B. Pilón-Jiménez ◽  
Fernanda Saldívar-González ◽  
Bárbara Díaz-Eufracio ◽  
José Medina-Franco

Compound databases of natural products have a major impact on drug discovery projects and other areas of research. The number of databases in the public domain with compounds with natural origins is increasing. Several countries, Brazil, France, Panama and, recently, Vietnam, have initiatives in place to construct and maintain compound databases that are representative of their diversity. In this proof-of-concept study, we discuss the first version of BIOFACQUIM, a novel compound database with natural products isolated and characterized in Mexico. We discuss its construction, curation, and a complete chemoinformatic characterization of the content and coverage in chemical space. The profile of physicochemical properties, scaffold content, and diversity, as well as structural diversity based on molecular fingerprints is reported. BIOFACQUIM is available for free.

Author(s):  
B. Angélica Pilón-Jiménez ◽  
Fernanda I. Saldívar-González ◽  
Bárbara I. Díaz-Eufracio ◽  
José L. Medina-Franco

Compound databases of natural products have a major impact on drug discovery projects and other areas of research. The number of databases in the public domain with compounds from natural origin is increasing. Several countries have initiatives in place to construct and maintain compound databases that are representative of their diversity. Examples are Brazil, France, Panama and recently Vietnam. Herein, we discuss the first version of BIOFACQUIM, a novel compound database with natural products isolated and characterized in Mexico. We discuss its construction, curation, and a complete chemoinformatic characterization of the content and coverage in chemical space. It is reported the profile of physicochemical properties, scaffold content, and diversity, as well as structural diversity based on molecular fingerprints. BIOFACQUIM is freely available.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joelle Ngo Hanna ◽  
Boris D. Bekono ◽  
Luc C. O. Owono ◽  
Flavien A. A. Toze ◽  
James A. Mbah ◽  
...  

Abstract In the quest to know why natural products (NPs) have often been considered as privileged scaffolds for drug discovery purposes, many investigations into the differences between NPs and synthetic compounds have been carried out. Several attempts to answer this question have led to the investigation of the atomic composition, scaffolds and functional groups (FGs) of NPs, in comparison with synthetic drugs analysis. This chapter briefly describes an atomic enumeration method for chemical libraries that has been applied for the analysis of NP libraries, followed by a description of the main differences between NPs of marine and terrestrial origin in terms of their general physicochemical properties, most common scaffolds and “drug-likeness” properties. The last parts of the work describe an analysis of scaffolds and FGs common in NP libraries, focusing on huge NP databases, e.g. those in the Dictionary of Natural Products (DNP), NPs from cyanobacteria and the largest chemical class of NP – terpenoids.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3287 ◽  
Author(s):  
Berin Karaman Mayack ◽  
Wolfgang Sippl ◽  
Fidele Ntie-Kang

Natural products have been used for the treatment of human diseases since ancient history. Over time, due to the lack of precise tools and techniques for the separation, purification, and structural elucidation of active constituents in natural resources there has been a decline in financial support and efforts in characterization of natural products. Advances in the design of chemical compounds and the understanding of their functions is of pharmacological importance for the biomedical field. However, natural products regained attention as sources of novel drug candidates upon recent developments and progress in technology. Natural compounds were shown to bear an inherent ability to bind to biomacromolecules and cover an unparalleled chemical space in comparison to most libraries used for high-throughput screening. Thus, natural products hold a great potential for the drug discovery of new scaffolds for therapeutic targets such as sirtuins. Sirtuins are Class III histone deacetylases that have been linked to many diseases such as Parkinson`s disease, Alzheimer’s disease, type II diabetes, and cancer linked to aging. In this review, we examine the revitalization of interest in natural products for drug discovery and discuss natural product modulators of sirtuins that could serve as a starting point for the development of isoform selective and highly potent drug-like compounds, as well as the potential application of naturally occurring sirtuin inhibitors in human health and those in clinical trials.


Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 107
Author(s):  
Yun Shi ◽  
Mark von Itzstein

Fragment-based drug discovery (FBDD) has become a major strategy to derive novel lead candidates for both new and established therapeutic targets, as it promises efficient exploration of chemical space by employing fragment-sized (MW 300) compounds. One of the first challenges in implementing a FBDD approach is the design of a fragment library, and more specifically, the choice of its size and individual members. In order to construct a library that maximises the chances of discovering novel chemical matter, a large number of fragments with sufficient structural diversity are often sought. However, the exact diversity of a certain collection of fragments remains elusive, which hinders direct comparisons among different selections of fragments. Building upon structural fingerprints that are commonly utilised in cheminformatics, we herein introduced quantitative measures for the structural diversity of fragment libraries. Structures of commercially available fragments were retrieved from the ZINC database and filtered by physicochemical properties, after which they were subject to selections with library sizes ranging from 100 to 100,000 compounds. The selected libraries were evaluated and compared quantitatively, resulting in interesting size-diversity relationships. Our results suggested the existence of an optimal size for structural diversity and demonstrated that such quantitative measures can guide the design of diverse fragment libraries under various circumstances


2020 ◽  
Vol 37 (11) ◽  
pp. 1436-1453 ◽  
Author(s):  
Nathanyal J. Truax ◽  
Daniel Romo

Various synthetic strategies have been developed to explore natural products as an enduring source of chemical information useful for probing biological relevant chemical space and impacting drug discovery.


2020 ◽  
Author(s):  
Alice Capecchi ◽  
Jean-Louis Reymond

<p>Microbial natural products (NPs) are an important source of drugs. However, their structural diversity remains poorly understood. Here we used our recently reported MinHashed Atom Pair fingerprint with diameter of four bonds (MAP4), a fingerprint suitable for molecules across very different sizes, to analyze the Natural Products Atlas (NPAtlas), a database of 25,523 NPs of bacterial or fungal origin downloaded from <a href="https://www.npatlas.org/joomla/">https://www.npatlas.org/joomla/</a>. To visualize NPAtlas by MAP4 similarity, we used the dimensionality reduction method tree map (TMAP) (<a href="http://tmap.gdb.tools/">http://tmap.gdb.tools</a>). The resulting interactive map (<a href="https://tm.gdb.tools/map4/npatlas_map_tmap/">https://tm.gdb.tools/map4/npatlas_map_tmap/</a>) organizes molecules by physico-chemical properties and compound families such as peptides, glycosides, polyphenols or terpenoids. Remarkably, the map separates bacterial and fungal NPs from one another, revealing that these two compound families are intrinsically different despite of their related biosynthetic pathways. We used these differences to train a machine learning model capable of distinguishing between NPs of bacterial or fungal origin. </p>


2021 ◽  
Author(s):  
Giang Nguyen ◽  
Jack Bennett ◽  
Sherrie Liu ◽  
Sarah Hancock ◽  
Daniel Winter ◽  
...  

The structural diversity of natural products offers unique opportunities for drug discovery, but challenges associated with their isolation and screening can hinder the identification of drug-like molecules from complex natural product extracts. Here we introduce a mass spectrometry-based approach that integrates untargeted metabolomics with multistage, high-resolution native mass spectrometry to rapidly identify natural products that bind to therapeutically relevant protein targets. By directly screening crude natural product extracts containing thousands of drug-like small molecules using a single, rapid measurement, novel natural product ligands of human drug targets could be identified without fractionation. This method should significantly increase the efficiency of target-based natural product drug discovery workflows.


2022 ◽  
Author(s):  
Fernanda I Saldivar-Gonzalez ◽  
Victor Daniel Aldas-Bulos ◽  
José Luis Medina-Franco ◽  
Fabien Plisson

Natural products (NPs) are primarily recognized as privileged structures to interact with protein drug targets. Their unique characteristics and structural diversity continue to marvel scientists for developing NP-inspired medicines, even...


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1385
Author(s):  
Alice Capecchi ◽  
Jean-Louis Reymond

Microbial natural products (NPs) are an important source of drugs, however, their structural diversity remains poorly understood. Here we used our recently reported MinHashed Atom Pair fingerprint with diameter of four bonds (MAP4), a fingerprint suitable for molecules across very different sizes, to analyze the Natural Products Atlas (NPAtlas), a database of 25,523 NPs of bacterial or fungal origin. To visualize NPAtlas by MAP4 similarity, we used the dimensionality reduction method tree map (TMAP). The resulting interactive map organizes molecules by physico-chemical properties and compound families such as peptides and glycosides. Remarkably, the map separates bacterial and fungal NPs from one another, revealing that these two compound families are intrinsically different despite their related biosynthetic pathways. We used these differences to train a machine learning model capable of distinguishing between NPs of bacterial or fungal origin.


2021 ◽  
Author(s):  
Giang Nguyen ◽  
Jack Bennett ◽  
Sherrie Liu ◽  
Sarah Hancock ◽  
Daniel Winter ◽  
...  

The structural diversity of natural products offers unique opportunities for drug discovery, but challenges associated with their isolation and screening can hinder the identification of drug-like molecules from complex natural product extracts. Here we introduce a mass spectrometry-based approach that integrates untargeted metabolomics with multistage, high-resolution native mass spectrometry to rapidly identify natural products that bind to therapeutically relevant protein targets. By directly screening crude natural product extracts containing thousands of drug-like small molecules using a single, rapid measurement, novel natural product ligands of human drug targets could be identified without fractionation. This method should significantly increase the efficiency of target-based natural product drug discovery workflows.


Sign in / Sign up

Export Citation Format

Share Document