scholarly journals Knockout of mafba Causes Inner-Ear Developmental Defects in Zebrafish via the Impairment of Proliferation and Differentiation of Ionocyte Progenitor Cells

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1699
Author(s):  
Xiang Chen ◽  
Yuwen Huang ◽  
Pan Gao ◽  
Yuexia Lv ◽  
Danna Jia ◽  
...  

Zebrafish is an excellent model for exploring the development of the inner ear. Its inner ear has similar functions to that of humans, specifically in the maintenance of hearing and balance. Mafba is a component of the Maf transcription factor family. It participates in multiple biological processes, but its role in inner-ear development remains poorly understood. In this study, we constructed a mafba knockout (mafba−/−) zebrafish model using CRISPR/Cas9 technology. The mafba−/− mutant inner ear displayed severe impairments, such as enlarged otocysts, smaller or absent otoliths, and insensitivity to sound stimulation. The proliferation of p63+ epidermal stem cells and dlc+ ionocyte progenitors was inhibited in mafba−/− mutants. Moreover, the results showed that mafba deletion induces the apoptosis of differentiated K+-ATPase-rich (NR) cells and H+-ATPase-rich (HR) cells. The activation of p53 apoptosis and G0/G1 cell cycle arrest resulted from DNA damage in the inner-ear region, providing a mechanism to account for the inner ear deficiencies. The loss of homeostasis resulting from disorders of ionocyte progenitors resulted in structural defects in the inner ear and, consequently, loss of hearing. In conclusion, the present study elucidated the function of ionic channel homeostasis and inner-ear development using a zebrafish Mafba model and clarified the possible physiological roles.

2021 ◽  
Vol 22 (12) ◽  
pp. 6497
Author(s):  
Anna Ghilardi ◽  
Alberto Diana ◽  
Renato Bacchetta ◽  
Nadia Santo ◽  
Miriam Ascagni ◽  
...  

The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene.


2013 ◽  
Vol 35 (10) ◽  
pp. 1198-1208
Author(s):  
Zhi-Qiang CHEN ◽  
Xin-Huan HAN ◽  
Qin-Jun WEI ◽  
Guang-Qian XING ◽  
Xin CAO

2009 ◽  
Vol 328 (2) ◽  
pp. 328-341 ◽  
Author(s):  
Garrett A. Soukup ◽  
Bernd Fritzsch ◽  
Marsha L. Pierce ◽  
Michael D. Weston ◽  
Israt Jahan ◽  
...  

Gene ◽  
2019 ◽  
Vol 686 ◽  
pp. 49-55 ◽  
Author(s):  
Rahul Mittal ◽  
George Liu ◽  
Sai P. Polineni ◽  
Nicole Bencie ◽  
Denise Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document