scholarly journals Enantioselective Synthesis, Enantiomeric Separations and Chiral Recognition

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1713
Author(s):  
Maria Elizabeth Tiritan ◽  
Madalena Pinto ◽  
Carla Fernandes

Chirality is a geometric property associated with the asymmetry of tridimensional features that accompanies our daily life at macroscopic as well as microscopic molecular levels [...]


2021 ◽  
Author(s):  
Wanlong Xiao ◽  
Yuhao Mo ◽  
Jing Guo ◽  
Zhishan Su ◽  
Shunxi Dong ◽  
...  

A new type of C2-symmetric chiral macrodiolides are readily obtained via chiral N,Nʹ-dioxide-scandium(III) complex-promoted asymmetric tandem Friedel-Crafts alkylation/intermolecular macrolactonization of ortho-quinone methides with C3-substituted indoles. This protocol provides an array...


1996 ◽  
Vol 118 (46) ◽  
pp. 11668-11669 ◽  
Author(s):  
R. Michael Lawrence ◽  
Scott A. Biller ◽  
John K. Dickson, ◽  
Janette V. H. Logan ◽  
David R. Magnin ◽  
...  

Author(s):  
Xin-Ming Xu ◽  
Ming Xie ◽  
Jiazhu Li ◽  
Mei-Xiang Wang

An exquisite Pybox/Cu(OTf)2-catalyzed asymmetric tandem reaction of tertiary enamides was developed, which enabled the expeditious synthesis of indolizino[8,7-b]indole derivatives in high yield, excellent enantioselectivity and diastereoselectivity.


2018 ◽  
Author(s):  
Matthew L. Landry ◽  
Grace McKenna ◽  
Noah Burns

A concise and selective synthesis of the dichlorinated meroterpenoid azamerone is described. The paucity of tactics for the synthesis of chiral organochlorides motivated the development of unique strategies for accessing these motifs in enantioenriched forms. The route features a novel enantioselective chloroetherification reaction, a Pd-catalyzed cross-coupling between a quinone diazide and a boronic hemiester, and a late-stage tetrazine [4+2]-cycloaddition/oxidation cascade.


2019 ◽  
Author(s):  
Ming Shang ◽  
Karla S. Feu ◽  
Julien C. Vantourout ◽  
Lisa M. Barton ◽  
Heather L. Osswald ◽  
...  

<div> <div> <div> <p>The union of two powerful transformations, directed C–H activation and decarboxylative cross-coupling, for the enantioselective synthesis of vicinally functionalized alkyl, carbocyclic, and heterocyclic compounds is described. Starting from simple carboxylic acid building blocks, this modular sequence exploits the residual directing group to access more than 50 scaffolds that would be otherwise extremely difficult to prepare. The tactical use of these two transformations accomplishes a formal vicinal difunctionalization of carbon centers in a way that is modular and thus amenable to rapid diversity incorporation. A simplification of routes to known preclinical drug candidates is presented along with the rapid diversification of an antimalarial compound series. </p> </div> </div> </div>


2018 ◽  
Author(s):  
Matthew L. Landry ◽  
Grace McKenna ◽  
Noah Burns

A concise and selective synthesis of the dichlorinated meroterpenoid azamerone is described. The paucity of tactics for the synthesis of chiral organochlorides motivated the development of unique strategies for accessing these motifs in enantioenriched forms. The route features a novel enantioselective chloroetherification reaction, a Pd-catalyzed cross-coupling between a quinone diazide and a boronic hemiester, and a late-stage tetrazine [4+2]-cycloaddition/oxidation cascade.


2019 ◽  
Author(s):  
Nancy Watfa ◽  
Weimin Xuan ◽  
Zoe Sinclair ◽  
Robert Pow ◽  
Yousef Abul-Haija ◽  
...  

Investigations of chiral host guest chemistry are important to explore recognition in confined environments. Here, by synthesizing water-soluble chiral porous nanocapsule based on the inorganic metal-oxo Keplerate-type cluster, {Mo<sub>132</sub>} with chiral lactate ligands with the composition [Mo<sub>132</sub>O<sub>372</sub>(H<sub>2</sub>O)<sub>72</sub>(<i>x-</i>Lactate)<sub>30</sub>]<sup>42-</sup> (<i>x</i> = D or L), it was possible to study the interaction with a chiral guest, L/D-carnitine and (<i>R</i>/<i>S</i>)-2-butanol in aqueous solution. The enantioselective recognition was studied by quantitative <sup>1</sup>H NMR and <sup>1</sup>H DOSY NMR which highlighted that the chiral recognition is regulated by two distinct sites. Differences in the association constants (K) of L- and D-carnitine, which, due to their charge, are generally restricted from entering the interior of the host, are observed, indicating that their recognition predominantly occurs at the surface pores of the structure. Conversely, a larger difference in association constants (K<i><sub>S</sub></i>/K<i><sub>R</sub></i> = 3) is observed for recognition within the capsule interior of (<i>R</i>)- and (<i>S</i>)-2-butanol.


Sign in / Sign up

Export Citation Format

Share Document