scholarly journals Hemodynamic Activity and Connectivity of the Prefrontal Cortex by Using Functional Near-Infrared Spectroscopy during Color-Word Interference Test in Korean and English Language

2020 ◽  
Vol 10 (8) ◽  
pp. 484
Author(s):  
Gihyoun Lee ◽  
Ji-Su Park ◽  
Mezie Laurence B. Ortiz ◽  
Jun-Yong Hong ◽  
Seung-Ho Paik ◽  
...  

In daily living, people are challenged to focus on their goal while eliminating interferences. Specifically, this study investigated the pre-frontal cortex (PFC) activity while attention control was tested using the self-made color-word interference test (CWIT) with a functional near-infrared spectroscopy device (fNIRS). Among 11 healthy Korean university students, overall the highest scores were obtained in the congruent Korean condition 1 (CKC-1) and had the least vascular response (VR) as opposed to the incongruent Korean condition 2 (IKC-2). The individual’s automatic reading response caused less brain activation while IKC-2 involves color suppression. Across the three trials per each condition, no significant differences (SD) in scores and in VR since there was no intervention did. Meanwhile, SD was observed between CKC-1 and English Congruent Condition 3 (ECC-3) across trials. However, SD was only observed on the third trial of VR. In the connectivity analysis, right and left PFC are activated on ECC-3. In CKC-1 and IKC-2, encompassing dorsomedial and dorsolateral although CKC-1 has less connection and connectivity due to less brain activation as compared. Therefore, aside from VR, brain connectivity could be identified non-invasively using fNIRS without ionizing radiation and at low-cost.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Seung Hyun Lee ◽  
Sang Hyeon Jin ◽  
Jinung An

Abstract The human brain is lateralized to dominant or non-dominant hemispheres, and controlled through large-scale neural networks between correlated cortical regions. Recently, many neuroimaging studies have been conducted to examine the origin of brain lateralization, but this is still unclear. In this study, we examined the differences in brain activation in subjects according to dominant and non-dominant hands while using chopsticks. Fifteen healthy right-handed subjects were recruited to perform tasks which included transferring almonds using stainless steel chopsticks. Functional near-infrared spectroscopy (fNIRS) was used to acquire the hemodynamic response over the primary sensory-motor cortex (SM1), premotor area (PMC), supplementary motor area (SMA), and frontal cortex. We measured the concentrations of oxy-hemoglobin and deoxy-hemoglobin induced during the use of chopsticks with dominant and non-dominant hands. While using the dominant hand, brain activation was observed on the contralateral side. While using the non-dominant hand, brain activation was observed on the ipsilateral side as well as the contralateral side. These results demonstrate dominance and functional asymmetry of the cerebral hemisphere.


2019 ◽  
Vol 48 (Supplement_4) ◽  
pp. iv34-iv39
Author(s):  
Jasmine Menant ◽  
Paulo Pelicioni ◽  
Yoshiro Okubo ◽  
Colleen Canning ◽  
Daina Sturnieks ◽  
...  

Abstract Background and Aim Past research has shown that compared with healthy peers, people with Parkinson’s Disease (PD) generate poorer stepping responses and display reduced ability to adapt gait to unexpected targets and obstacles. However, the neural basis of these impairments in PD is unclear. Here, we aimed to investigate cortical activation in pre-frontal and motor areas using functional near-infrared spectroscopy (fNIRS) during stepping and gait adaptability in people with PD, compared with healthy adults. Methods Forty-four people with PD (>40 years, Hoen & Yahr stage 1-3) and 44 healthy age and sex-matched healthy adults performed three cognitively-demanding stepping tasks and a test of gait adaptability. We recorded relative changes in oxy-haemoglobin (HbO) and deoxy-haemoglobin (HbR) concentrations in the dorsolateral prefrontal cortex, supplementary motor area, premotor cortex and primary cortex using fNIRS. Results Data collection is ongoing with >75% participants already assessed. We will conduct between group-comparisons to compare HbO and HbR concentrations in the selected regions of interest in the stepping and the gait adaptability tests. Physical and cognitive predictors of brain activation in each task in each group will also be computed using regression models. Conclusion Based on the results of our recent systematic review of fNIRS-recorded brain activation during walking tasks (1), we hypothesise that compared with healthy-aged matched peers, people with PD will show increased prefrontal and motor cortices activation during stepping and gait adaptability tests. This would suggest that people with PD require more attentional resources for safe walking. Reference (1) Pelicioni et al. Prefrontal cortical activation measured by fNIRS during walking: effects of age, disease and secondary task. Peer J 2019; 7: e6833.


Sign in / Sign up

Export Citation Format

Share Document