scholarly journals Personal Protective Equipment Alters Leg Muscle Fatigability Independent of Transcranial Direct Current Stimulation: A Comparison with Pre-COVID-19 Pandemic Results

2021 ◽  
Vol 11 (8) ◽  
pp. 962
Author(s):  
Alexandra C. Fietsam ◽  
Justin R. Deters ◽  
Craig D. Workman ◽  
Thorsten Rudroff

In response to the COVID-19 pandemic, the use of personal protective equipment (PPE; e.g., face mask) has increased. Mandating subjects to wear PPE during vigorous exercise might affect the fatigue outcomes of transcranial direct current stimulation (tDCS) studies. The purpose of this study was to investigate whether the use of PPE affected the performance of a tDCS-influenced fatigue task in healthy adults. A total of 16 young and healthy subjects were recruited and wore PPE during an isokinetic fatigue task in conjunction with sham, 2 mA, and 4 mA tDCS conditions. Subjects were matched to subjects who did not wear PPE during our previous pre-pandemic study in which right knee extensor fatigability increased under these same conditions. The results show that right knee extensor fatigability, derived from torque and work (FI-T and FI-W, respectively), was higher in the PPE study compared to the No PPE study in the sham condition. Additionally, there were no differences in knee extensor fatigability or muscle activity between sham, 2 mA, and 4 mA tDCS in the present study, which contrasts with our previous results. Thus, PPE worn by subjects and researchers might have a detrimental effect on fatigue outcomes in tDCS studies irrespective of the stimulation intervention.

2020 ◽  
Vol 10 (4) ◽  
pp. 244 ◽  
Author(s):  
Craig D. Workman ◽  
Alexandra C. Fietsam ◽  
Thorsten Rudroff

Transcranial direct current stimulation (tDCS) has previously shown different cortical excitability and neuropsychological effects between women and men. However, the sex-specific effects of tDCS on leg muscle fatigability has not been investigated. The purpose of this study was to determine the effects of a single session of 2 mA and 4 mA primary motor cortex tDCS on leg muscle fatigability in healthy young men and women in a crossover design. Twenty participants (women = 10) completed isokinetic fatigue testing (40 maximal reps, 120°/s) of the knee extensors and flexors in conjunction with sham, 2 mA, and 4 mA tDCS in a double-blind, randomized design. The fatigue index from each condition was calculated. Women had significantly greater knee extensor fatigability in the 4 mA condition compared to men (57.8 ± 6.8% versus 44.1 ± 18.4%; p = 0.041, d = 0.99). This study provides additional evidence that responses to tDCS may be sex-specific and highlights the necessity of accounting and powering for sex differences in future investigations.


2017 ◽  
Vol 38 (07) ◽  
pp. 493-500 ◽  
Author(s):  
Alexandre Okano ◽  
Daniel Machado ◽  
Leônidas Oliveira Neto ◽  
Luiz Farias-Junior ◽  
Pedro Agrícola ◽  
...  

AbstractThis study evaluated whether transcranial direct current stimulation (tDCS) could change physiological and psychological responses during vigorous exercise with a constant load. 13 sedentary males (23.0±4.2 years; 25.6±4.2 kg/m²) took part in this randomized, crossed-over, sham-controlled, and double-blinded study. Participants underwent 2 sessions with anodal or sham tDCS (2 mA, 20 min) applied before exercise over the left temporal cortex targeting the left insular cortex. The exercise was performed at vigorous intensity (%HRmax 81.68±6.37) for 30 min. Heart rate (HR), rating of perceived exertion (RPE) and affective responses (pleasure/displeasure) were recorded at every 5 min. Additionally, heart rate variability (HRV) was measured before, immediately after and 60 min after the end of exercise. A 2-way repeated measure ANOVA showed that tDCS improved HRV neither at rest nor after exercise (p>0.15). Similarly, HR, RPE, and affective responses were not enhanced by tDCS during vigorous exercise (p>0.23). The findings of this study suggest that tCDS does not modulate either HRV at rest nor HR, RPE and affective responses during exercise. Transcranial direct current stimulation’s efficiency might depend on the participants’ levels of physical fitness and parameters of stimulation (e. g., duration, intensity, and arrangement of electrodes).


2019 ◽  
Vol 51 (Supplement) ◽  
pp. 343
Author(s):  
Carlos A. Estrada ◽  
Tyler W.D. Muddle ◽  
Cameron S. Mackey ◽  
Masoud Moghaddam ◽  
Jason M. DeFreitas ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 12 ◽  
Author(s):  
Craig Workman ◽  
John Kamholz ◽  
Thorsten Rudroff

Transcranial direct current stimulation (tDCS) modulates cortical excitability and affects a variety of outcomes. tDCS at intensities ≤2 mA is well-tolerated, but the tolerability and efficacy of tDCS at intensities >2 mA merits systematic investigation. The study objective was to determine the tolerability and effects of 4 mA tDCS on leg muscle fatigability. Thirty-one young, healthy adults underwent two randomly ordered tDCS conditions (sham, 4 mA) applied before and during an isokinetic fatigue test of the knee extensors and flexors. Subjects reported the severity of the sensations felt from tDCS. Primary outcomes were sensation tolerability and the fatigue index of the knee extensors and flexors. A repeated-measures ANOVA determined statistical significance (p < 0.05). Sensation severity at 4 mA tDCS was not substantially different than sham. However, two subjects reported a moderate–severe headache, which dissipated soon after the stimulation ended. The left knee flexors had significantly greater fatigability with 4 mA tDCS compared with sham (p = 0.018). tDCS at 4 mA was well-tolerated by young, healthy subjects and increased left knee flexor fatigability. Exploration of higher intensity tDCS (>2 mA) to determine the potential benefits of increasing intensity, especially in clinical populations with decreased brain activity/excitability, is warranted.


2009 ◽  
Vol 40 (01) ◽  
Author(s):  
F Buttkus ◽  
V Baur ◽  
HC Jabusch ◽  
M Weidenmüller ◽  
S Schneider ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document