scholarly journals Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique

2016 ◽  
Vol 6 (3) ◽  
pp. 36 ◽  
Author(s):  
Ridha Djemal ◽  
Ayad Bazyed ◽  
Kais Belwafi ◽  
Sofien Gannouni ◽  
Walid Kaaniche
2019 ◽  
Vol 51 (2) ◽  
pp. 102-113 ◽  
Author(s):  
Simranjit Kaur ◽  
Sukhwinder Singh ◽  
Priti Arun ◽  
Damanjeet Kaur ◽  
Manoj Bajaj

Attention deficit hyperactivity disorder (ADHD) is a childhood behavioral disorder that can persist into adulthood. Electroencephalography (EEG) plays a significant role in assessing the neurophysiology of ADHD because of its ability to reveal complex brain activity. The present study proposes an EEG-based diagnosis system using the phase space reconstruction technique to classify ADHD and control adults. Electric activity is recorded for 47 ADHD and 50 control adults during the eyes-open, eyes-closed, and Continuous Performance Test (CPT) condition. Various statistical features are extracted from Euclidean distances based on phase space reconstruction of signals. The proposed system is evaluated with 2 feature selection methods (correlation-based feature selection and particle swarm optimization) and 5 machine learning methods (neural dynamic classifier, support vector machine, enhanced probabilistic neural network, k-nearest neighbor, and naive-Bayes classifier). Experimental results showed the highest testing accuracy of 93.3% under the eyes-open, 90% under the eyes-closed, and 100% under the CPT condition. This study focused on the utility of phase space reconstruction of brain signals to discriminate between ADHD and control adults.


2018 ◽  
Vol 17 (01) ◽  
pp. 1850006 ◽  
Author(s):  
Yongping Zhang ◽  
Pengjian Shang ◽  
Hui Xiong ◽  
Jianan Xia

Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.


2003 ◽  
Vol 13 (02) ◽  
pp. 467-471 ◽  
Author(s):  
Y. J. CAO ◽  
P. X. ZHANG ◽  
S. J. CHENG

A novel approach to control chaotic systems has been developed. The approach employs the technique of phase space reconstruction in nonlinear dynamical systems theory to construct a linear part in the reconstructed system and design a feedback control law. The effectiveness of the proposed approach has been demonstrated through its applications to two well-known chaotic systems: Lorenz chaos and Rössler chaos.


Sign in / Sign up

Export Citation Format

Share Document