scholarly journals BiOCOOH Microflowers Decorated with Ag/Ag2CrO4 Nanoparticles as Highly Efficient Photocatalyst for the Treatment of Toxic Wastewater

Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 93 ◽  
Author(s):  
Shijie Li ◽  
Bing Xue ◽  
Jialin Chen ◽  
Wei Jiang ◽  
Yanping Liu

A novel flower-like Ag/Ag2CrO4/BiOCOOH heterojunction photocatalyst was synthesized by a facile in-situ precipitation strategy combined with photoreduction treatment. Morphological studies revealed that numerous Ag/Ag2CrO4 nanoparticles were evenly anchored on BiOCOOH microflowers, producing a novel heterojunction with the compactly interfacial contact. Optical absorption characterization demonstrated that Ag/Ag2CrO4/BiOCOOH possessed much better sunlight harvesting ability than Ag2CrO4/BiOCOOH and BiOCOOH. Photocatalytic experiments verified that compared with BiOCOOH, Ag2CrO4, Ag/Ag2CrO4, and Ag2CrO4/BiOCOOH, Ag/Ag2CrO4/BiOCOOH achieved remarkable efficiency by eliminating 100% of rhodamine B (RhB), 82.6% of methyl orange (MO) or 69.4% of ciprofloxacin (CIP) within 50 min at a catalyst dosage of 0.4 g/L. The high photocatalytic performance is likely owing to the improved sunlight response and the distinctly suppressed recombination of charge carriers arising from the formation of the novel 3D hierarchical heterostructure. The quenching test signified that h+, and •O2− were detected as the prevailing active species in wastewater treatment. This study may provide a viable strategy for enhancing the photocatalytic performance of wide band-gap semiconductors.

Nanoscale ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 4038-4050
Author(s):  
Ida Gjerlevsen Nielsen ◽  
Sanna Sommer ◽  
Bo Brummerstedt Iversen

The indium oxides, c-In2O3, h-In2O3, InOOH and In(OH)3, have been studied by in situ X-ray scattering to determine the formation and transformation mechanisms in this system of important wide band gap semiconductors.


RSC Advances ◽  
2015 ◽  
Vol 5 (29) ◽  
pp. 22740-22752 ◽  
Author(s):  
Menglin Sun ◽  
Qihang Zhao ◽  
Chunfang Du ◽  
Zhiliang Liu

A series of BiOCl/SnO2 heterojunctions exhibiting exceptional visible light photocatalytic performance has been successfully prepared using a two-step solution route.


2009 ◽  
Vol 95 (17) ◽  
pp. 172109 ◽  
Author(s):  
Anderson Janotti ◽  
Eric Snow ◽  
Chris G. Van de Walle

RSC Advances ◽  
2016 ◽  
Vol 6 (97) ◽  
pp. 94361-94364 ◽  
Author(s):  
Hongwei Huang ◽  
Ke Xiao ◽  
Fan Dong ◽  
Jinjian Wang ◽  
Xin Du ◽  
...  

Sulfur doping simultaneously endows the wide-band-gap Bi2O2CO3 promoted band energy structure and charge separation achieving enhanced visible-light photocatalytic performance for dye degradation and NO removal.


2002 ◽  
Vol 745 ◽  
Author(s):  
G. Vellianitis ◽  
G. Apostolopoulos ◽  
A. Dimoulas ◽  
K. Argyropoulos ◽  
B. Mereu ◽  
...  

ABSTRACTY2O3 thin films were grown directly on Si (001) by MBE and annealed in-situ under UHV at various annealing temperatures. The samples were investigated in-situ by RHEED and ex-situ by HRTEM. A 7 to 15 Å thick non-uniform interfacial amorphous layer is observed in the as-grown sample. After annealing at 490°C under UHV for 30 minutes the amorphous layer is reduced and a sharp Y2O3/Si interface is obtained. At higher annealing temperatures, YSi2 islands start to form at the Y2O3/Si interface. I-V measurements performed on generic MIS structures show that the annealed samples exhibit higher leakage current density than the as-grown sample, due to reduction of the wide band gap interfacial layer. Leakage current densities in annealed samples remain below 1A/cm2, which is acceptable for future high-κ transistor fabrication.


2014 ◽  
Vol 43 (25) ◽  
pp. 9620-9632 ◽  
Author(s):  
T. O. L. Sunde ◽  
M. Lindgren ◽  
T. O. Mason ◽  
M.-A. Einarsrud ◽  
T. Grande

Wide band-gap semiconductors doped with luminescent rare earth elements (REEs) have attracted recent interest due to their unique optical properties.


Sign in / Sign up

Export Citation Format

Share Document