scholarly journals Facile Synthesis of Potassium-Doped Titanium Oxide Nanostructure (KTiOxs)/AlO(OH) Composites for Enhanced Photocatalytic Performance

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 548
Author(s):  
So Yoon Lee ◽  
Tatsuya Matsubara ◽  
Daiki Numata ◽  
Ai Serizawa

Generally, nanoparticles (NPs) are used as photocatalysts, which sometimes results in difficulties in the separation and recycling of photocatalysts from suspensions after their application in water and wastewater treatment, which hinders industrial applications of NPs that are too fine to be removed by gravitational settling. This can be solved by using support NPs to overcome these problems. -OH enrich AlO(OH), which is produced by a steam coating process, has been could be used as a possible support, because the -OH groups on the surface can interact with foreign molecules; thus, various composite functional materials can be prepared. Potassium doped titanium oxide NPs, which are produced by a wet corrosion process, namely KTiOxs, have been selected as photocatalysts, because KTiOxs have sufficient K+ ions, thereby expecting the chemical bonding with -OH group from AlO(OH). This study fabricated a novel photocataysis system made by combining KTiOxs as catalysts and AlO(OH) as the catalysts’ support, namely KTiOxs/AlO(OH) composites. The KTiOxs nanowires, obtained from 10 mol/L of a KOH solution treated with Ti and AlO(OH) at 280 °C for 24 h through a steam coating process, yielded the highest surface area and the highest photocatalytic performance.

2021 ◽  
Vol 13 (10) ◽  
pp. 5717
Author(s):  
Mian Muhammad-Ahson Aslam ◽  
Hsion-Wen Kuo ◽  
Walter Den ◽  
Muhammad Usman ◽  
Muhammad Sultan ◽  
...  

As the world human population and industrialization keep growing, the water availability issue has forced scientists, engineers, and legislators of water supply industries to better manage water resources. Pollutant removals from wastewaters are crucial to ensure qualities of available water resources (including natural water bodies or reclaimed waters). Diverse techniques have been developed to deal with water quality concerns. Carbon based nanomaterials, especially carbon nanotubes (CNTs) with their high specific surface area and associated adsorption sites, have drawn a special focus in environmental applications, especially water and wastewater treatment. This critical review summarizes recent developments and adsorption behaviors of CNTs used to remove organics or heavy metal ions from contaminated waters via adsorption and inactivation of biological species associated with CNTs. Foci include CNTs synthesis, purification, and surface modifications or functionalization, followed by their characterization methods and the effect of water chemistry on adsorption capacities and removal mechanisms. Functionalized CNTs have been proven to be promising nanomaterials for the decontamination of waters due to their high adsorption capacity. However, most of the functional CNT applications are limited to lab-scale experiments only. Feasibility of their large-scale/industrial applications with cost-effective ways of synthesis and assessments of their toxicity with better simulating adsorption mechanisms still need to be studied.


2015 ◽  
Vol 71 (3) ◽  
pp. 309-319 ◽  
Author(s):  
Arash Shahmansouri ◽  
Christopher Bellona

Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals.


2010 ◽  
Vol 62 (4) ◽  
pp. 963-971 ◽  
Author(s):  
Won-Youl Choi ◽  
No-Suk Park ◽  
Mark R. Wiesner ◽  
Jong-Oh Kim

A self-organized nano-structured, photocatalytic TiO2 membrane with large surface area of anatase crystallites was successfully fabricated by anodization. The nano-structured anodized TiO2 membrane was characterized using SEM, XRD and TEM techniques and the operational parameters to fabricate such as anodization time and applied anodic potential were also investigated. The anodized TiO2 membrane showed high photocatalytic performance in terms of refractory organics decomposition, bacteria inactivation and membrane permeability, which suggests that problems of conventional photocatalytic treatment and membrane filtration in water and wastewater treatment may be reduced using this combined process.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Tanveer A. Tabish ◽  
Fayyaz A. Memon ◽  
Diego E. Gomez ◽  
David W. Horsell ◽  
Shaowei Zhang

2015 ◽  
Vol 4 (0) ◽  
pp. 9781780402840-9781780402840
Author(s):  
H. Hahn ◽  
E. Hoffman ◽  
H. Odegaard

1989 ◽  
Vol 21 (2) ◽  
pp. 189-193 ◽  
Author(s):  
B. Rigden

The design of a reverse osmosis desalination unit and a rotating biological contactor for water and wastewater treatment for a small island resort is described. Some operational data are presented and recommendations for design flows and loadings are made.


Sign in / Sign up

Export Citation Format

Share Document