scholarly journals Fischer-Tropsch Synthesis: Cd, In and Sn Effects on a 15%Co/Al2O3 Catalyst

Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 862 ◽  
Author(s):  
Wenping Ma ◽  
Gary Jacobs ◽  
Wilson D. Shafer ◽  
Yaying Ji ◽  
Jennifer L. S. Klettlinger ◽  
...  

The effects of 1% of Cd, In and Sn additives on the physicochemical properties and Fischer-Tropsch synthesis (FTS) performance of a 15% Co/Al2O3 catalyst were investigated. The fresh and spent catalysts were characterized by BET, temperature programmed reduction (TPR), H2-chemisorption, NH3 temperature programmed desorption (TPD), X-ray absorption near edge spectroscopy (XANES), and X ray diffraction (XRD). The catalysts were tested in a 1 L continuously stirred tank reactor (CSTR) at 220 °C, 2.2 MPa, H2/CO = 2.1 and 20–55% CO conversion. Addition of 1% of Cd or In enhanced the reduction degree of 15%Co/Al2O3 by ~20%, while addition of 1% Sn slightly hindered it. All three additives adversely impacted Co dispersion by 22–32% by increasing apparent Co cluster size based on the H2-chemisorption measurements. However, the decreased Co active site density resulting from the additives did not result in a corresponding activity loss; instead, the additives decreased the activity of the Co catalysts to a much greater extent than expected, i.e., 82–93%. The additional detrimental effect on catalyst activity likely indicates that the Cd, In and Sn additives migrated to and covered active sites during reaction and/or provided an electronic effect. XANES results showed that oxides of the additives were present during the reaction, but that a fraction of metal was also likely present based on the TPR and reaction testing results. This is in contrast to typical promoters that become metallic at or below ~350 °C, such as noble metal promoters (e.g., Pt, Ru) and Group 11 promoters (e.g., Ag, Au) on Co catalysts in earlier studies. In the current work, all three additives remarkably increased CH4 and CO2 selectivities and decreased C5+ selectivity, with the Sn and In additives having a greater effect. Interestingly, the Cd, In, or Sn additives were found to influence hydrogenation and isomerization activities. At a similar conversion level (i.e., in the range of 40–50%), the additives significantly increased 2-C4 olefin content from 3.8 to 10.6% and n-C4 paraffin from 50 to 61% accompanied by decreases in 1-C4 olefin content from 48 to 30%. The Sn contributed the greatest impact on the secondary reactions of 1-olefins, followed by the In and Cd. NH3-TPD results suggest enhanced acid sites on cobalt catalysts resulting from the additives, which likely explains the change in selectivities for the different catalysts.

2017 ◽  
Vol 2 (1) ◽  
pp. 51-61
Author(s):  
Nima Mohammadi Taher ◽  
Maedeh Mahmoudi ◽  
Seyyede Shahrzad Sajjadivand

Abstract An investigation was done to develop and characterize the alumina supported cobalt catalyst for Fischer-Tropsch Synthesis to produce biodiesel from biomass with the aim to produce alumina-supported cobalt catalysts containing 7 to 19 wt.% cobalt content. By using incipient wetness impregnation of γ-Al2O3 supports with cobalt nitrate hexahydrate with ethanol and distilled water solutions; the 14 wt.% cobalt content in catalyst was achieved. Nitrogen adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray fluorescence (XRF), H2temperature programmed reduction (H2-TPR), temperature programmed desorption (TPD), temperature programmed oxidation (TPO) and carbon monoxide chemisorption were used for the characterization of the catalysts to attain an appropriate cobalt catalyst. In order to investigate the effect of the impregnation on the crystalline size, surface area and cobalt content, three different impregnation methods with various durations were investigated. In addition, increasing the impregnation duration increased the cobalt content and its dispersion. Based on results, positive effect of the alumina support and impregnation duration on the crystallite size, surface area, and pore diameter, reducibility of the catalyst and cobalt dispersion were investigated. Thus, cobalt catalyst for using in fixed bed reactor to produce biodiesel from biomass through Fischer-Tropsch Synthesis was prepared and characterized.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 497 ◽  
Author(s):  
Renata Sadek ◽  
Karolina A. Chalupka ◽  
Pawel Mierczynski ◽  
Jacek Rynkowski ◽  
Jacek Gurgul ◽  
...  

Co-containing Beta zeolite catalysts prepared by a wet impregnation and two-step postsynthesis method were investigated. The activity of the catalysts was examined in Fischer-Tropsch synthesis (FTS), performed at 30 atm and 260 °C. The physicochemical properties of all systems were investigated by means of X-ray diffraction (XRD), in situ XRD, temperature programmed desorption of ammonia (NH3-TPD), X-ray Photoelectron Spectroscopy (XPS), temperature programmed reduction of hydrogen (TPR-H2), and transmission electron microscopy (TEM). Among the studied catalysts, the best results were obtained for the samples prepared by a two-step postsynthesis method, which achieved CO conversion of about 74%, and selectivity to liquid products of about 86%. The distribution of liquid products for Red-Me-Co20Beta was more diversified than for Red-Mi-Co20Beta. It was observed that significant influence of the zeolite dealumination of mesoporous zeolite on the catalytic performance in FTS. In contrast, for microporous catalysts, the dealumination did not play such a significant role and the relatively high activity is observed for both not dealuminated and dealuminated catalysts. The main liquid products of FTS on both mesoporous and microporous catalysts were C10-C14 isoalkanes and n-alkanes. The iso-/n-alkanes ratio for dealuminated zeolite catalysts was three times higher than that for not dealuminated ones, and was related to the presence of different kind of acidic sites in both zeolite catalysts.


Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 408-426
Author(s):  
Mirtha Z. Leguizamón León Ribeiro ◽  
Joice C. Souza ◽  
Muthu Kumaran Gnanamani ◽  
Michela Martinelli ◽  
Gabriel F. Upton ◽  
...  

In this contribution, we examine the effect of the promoter´s ionic charge and valence orbital energy on the catalytic activity of Fe-based catalysts, based on in situ synchrotron X-ray powder diffraction (SXRPD), temperature-programmed-based techniques (TPR, TPD, CO-TP carburization), and Fischer–Tropsch synthesis catalytic testing studies. We compared the promoting effects of K (a known promoter for longer-chained products) with Ba, which has a similar ionic radius but has double the ionic charge. Despite being partially “buried” in a crystalline BaCO3 phase, the carburization of the Ba-promoted catalyst was more effective than that of K; this was primarily due to its higher (2+) ionic charge. With Ba2+, higher selectivity to methane and lighter products were obtained compared to the K-promoted catalysts; this is likely due to Ba´s lesser capability of suppressing H adsorption on the catalyst surface. An explanation is provided in terms of a more limited mixing between electron-filled Ba2+ 5p and partially filled Fe 3d orbitals, which are expected to be important for the chemical promotion, as they are further apart in energy compared to the K+ 3p and Fe 3d orbitals.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1764 ◽  
Author(s):  
Anna Stavitskaya ◽  
Kristina Mazurova ◽  
Mikhail Kotelev ◽  
Oleg Eliseev ◽  
Pavel Gushchin ◽  
...  

Halloysite aluminosilicate nanotubes loaded with ruthenium particles were used as reactors for Fischer–Tropsch synthesis. To load ruthenium inside clay, selective modification of the external surface with ethylenediaminetetraacetic acid, urea, or acetone azine was performed. Reduction of materials in a flow of hydrogen at 400 °C resulted in catalysts loaded with 2 wt.% of 3.5 nm Ru particles, densely packed inside the tubes. Catalysts were characterized by N2-adsorption, temperature-programmed desorption of ammonia, transmission electron microscopy, X-ray fluorescence, and X-ray diffraction analysis. We concluded that the total acidity and specific morphology of reactors were the major factors influencing activity and selectivity toward CH4, C2–4, and C5+ hydrocarbons in the Fischer–Tropsch process. Use of ethylenediaminetetraacetic acid for ruthenium binding gave a methanation catalyst with ca. 50% selectivity to methane and C2–4. Urea-modified halloysite resulted in the Ru-nanoreactors with high selectivity to valuable C5+ hydrocarbons containing few olefins and a high number of heavy fractions (α = 0.87). Modification with acetone azine gave the slightly higher CO conversion rate close to 19% and highest selectivity in C5+ products. Using a halloysite tube with a 10–20-nm lumen decreased the diffusion limitation and helped to produce high-molecular-weight hydrocarbons. The extremely small C2–C4 fraction obtained from the urea- and azine-modified sample was not reachable for non-templated Ru-nanoparticles. Dense packing of Ru nanoparticles increased the contact time of olefins and their reabsorption, producing higher amounts of C5+ hydrocarbons. Loading of Ru inside the nanoclay increased the particle stability and prevented their aggregation under reaction conditions.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 352
Author(s):  
Christian Schulz ◽  
Peter Kolb ◽  
Dennis Krupp ◽  
Lars Ritter ◽  
Alfred Haas ◽  
...  

A series of Co/TiO2 catalysts was tested in a parameters field study for Fischer‒Tropsch synthesis (FTS). All catalysts were prepared by the conventional impregnation technique to obtain an industrially relevant Co content of 10 wt % or 20 wt %, respectively. In summary, 10 different TiO2 of pure anatase phase, pure rutile phase, as well as mixed rutile and anatase phase were used as supports. Performance tests were conducted with a 32-fold high-throughput setup for accelerated catalyst benchmarking; thus, 48 experiments were completed within five weeks in a relevant operation parameters field (170 °C to 233.5 °C, H2/CO ratio 1 to 2.5, and 20 bar(g)). The most promising catalyst showed a CH4 selectivity of 5.3% at a relevant CO conversion of 60% and a C5+ productivity of 2.1 gC5+/(gCo h) at 207.5 °C. These TiO2-based materials were clearly differentiated with respect to the application as supports in Co-catalyzed FTS catalysis. The most prospective candidates are available for further FTS optimization at a commercial scale.


Fuel ◽  
2021 ◽  
Vol 293 ◽  
pp. 120435
Author(s):  
Dalia Liuzzi ◽  
Francisco J. Pérez-Alonso ◽  
Sergio Rojas

Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120398
Author(s):  
Shupeng Guo ◽  
Zhongyi Ma ◽  
Jungang Wang ◽  
Bo Hou ◽  
Litao Jia ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 732
Author(s):  
José Antonio Díaz-López ◽  
Jordi Guilera ◽  
Martí Biset-Peiró ◽  
Dan Enache ◽  
Gordon Kelly ◽  
...  

The present work explores the technical feasibility of passivating a Co/γ-Al2O3 catalyst by atomic layer deposition (ALD) to reduce deactivation rate during Fischer–Tropsch synthesis (FTS). Three samples of the reference catalyst were passivated using different numbers of ALD cycles (3, 6 and 10). Characterization results revealed that a shell of the passivating agent (Al2O3) grew around catalyst particles. This shell did not affect the properties of passivated samples below 10 cycles, in which catalyst reduction was hindered. Catalytic tests at 50% CO conversion evidenced that 3 and 6 ALD cycles increased catalyst stability without significantly affecting the catalytic performance, whereas 10 cycles caused blockage of the active phase that led to a strong decrease of catalytic activity. Catalyst deactivation modelling and tests at 60% CO conversion served to conclude that 3 to 6 ALD cycles reduced Co/γ-Al2O3 deactivation, so that the technical feasibility of this technique was proven in FTS.


Sign in / Sign up

Export Citation Format

Share Document