scholarly journals Removal of Banana Tree Fungi Using Green Tuff Rock Powder Waste Containing Zeolite

Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1049
Author(s):  
Toyohisa Fujita ◽  
Josiane Ponou ◽  
Gjergj Dodbiba ◽  
Ji-Whahn Anh ◽  
Siminig Lu ◽  
...  

Hinai green tuff, which is found in Akita Prefecture, Japan, is used for the production of building materials, etc. About 60% of all stone is emitted as waste powder and therefore it is important to find ways for recycling it. In this work, the characteristics of green tuff powder have been investigated. The results of scanning electron microscope (SEM) and elemental map observations indicate that the green tuff contains TiO2 on zeolite. The green tuff can therefore be used as a natural catalyst for producing hydrogen peroxide with moisture and oxygen with light. The optimum calcined temperature of the green tuff powder is about 800 °C, producing the hydroxyl radical from hydrogen peroxide decomposition without ultraviolet light (UV) and decomposition of the superoxide anion. As the application of green tuff powder, Cavendish banana trees found in the Philippines infected by a new Panama disease were treated with powder suspension in order to remove the fungus (a type of Fusarium wilt) due to the photocatalyst characteristics of powder. The suspension, prepared by using the powder was sprayed on the infected banana trees for about one month. Photograph observation indicated that the so-called 800 °C suspension spray was more effective in growing the infected banana trees.

TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 37-46 ◽  
Author(s):  
PEDRO E.G. LOUREIRO ◽  
SANDRINE DUARTE ◽  
DMITRY V. EVTUGUIN ◽  
M. GRAÇA V.S. CARVALHO

This study puts particular emphasis on the role of copper ions in the performance of hydrogen peroxide bleaching (P-stage). Owing to their variable levels across the bleaching line due to washing filtrates, bleaching reagents, and equipment corrosion, these ions can play a major role in hydrogen peroxide decomposition and be detrimental to polysaccharide integrity. In this study, a Cu-contaminated D0(EOP)D1 prebleached pulp was subjected to an acidic washing (A-stage) or chelation (Q-stage) before the alkaline P-stage. The objective was to understand the isolated and combined role of copper ions in peroxide bleaching performance. By applying an experimental design, it was possible to identify the main effects of the pretreatment variables on the extent of metals removal and performance of the P-stage. The acid treatment was unsuccessful in terms of complete copper removal, magnesium preservation, and control of hydrogen peroxide consumption in the following P-stage. Increasing reaction temperature and time of the acidic A-stage improved the brightness stability of the D0(EOP)D1AP bleached pulp. The optimum conditions for chelation pretreatment to maximize the brightness gains obtained in the subsequent P-stage with the lowest peroxide consumption were 0.4% diethylenetriaminepentaacetic acid (DTPA), 80ºC, and 4.5 pH.


1988 ◽  
Vol 53 (8) ◽  
pp. 1636-1646 ◽  
Author(s):  
Viliam Múčka ◽  
Kamil Lang

Some physical and catalytic properties of the two-component copper(II)oxide-chromium(III)oxide catalyst with different content of both components were studied using the decomposition of the aqueous solution of hydrogen peroxide as a testing reaction. It has been found that along to both basic components, the system under study contains also the spinel structure CuCr2O4, chromate washable by water and hexavalent ions of chromium unwashable by water. The soluble chromate is catalytically active. During the first period of the reaction the equilibrium is being established in both homogeneous and heterogeneous catalytic systems. The catalytic activity as well as the specific surface area of the washed solid is a non-monotonous function of its composition. It seems highly probable that the extreme values of both these quantities are not connected with the detected admixtures in the catalytic system. The system under study is very insensitive with regard to the applied doses of gamma radiation. Its catalytic properties are changed rather significantly after the thermal treatment and particularly after the partial reduction to low degree by hydrogen. The observed changes of the catalytic activity of the system under study are very probably in connection with the changes of the valence state of the catalytically active components of the catalyst.


RSC Advances ◽  
2015 ◽  
Vol 5 (57) ◽  
pp. 46295-46300 ◽  
Author(s):  
Mohammad A. Hasnat ◽  
Mohammed M. Rahman ◽  
Iqbal A. Siddiquey ◽  
S. M. Borhanuddin ◽  
M. Saiful Alam ◽  
...  

A Pd site initiates hydrogen peroxide decomposition by adsorbing one ‘O’ followed by splitting of O–H bond. Meanwhile, a Pt site finally completes the decomposition process by enabling desorption of the incipient O2 species.


Sign in / Sign up

Export Citation Format

Share Document