scholarly journals Elevated CO2 Concentration Alters Photosynthetic Performances under Fluctuating Light in Arabidopsis thaliana

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2329
Author(s):  
Shun-Ling Tan ◽  
Xing Huang ◽  
Wei-Qi Li ◽  
Shi-Bao Zhang ◽  
Wei Huang

In view of the current and expected future rise in atmospheric CO2 concentrations, we examined the effect of elevated CO2 on photoinhibition of photosystem I (PSI) under fluctuating light in Arabidopsis thaliana. At 400 ppm CO2, PSI showed a transient over-reduction within the first 30 s after transition from dark to actinic light. Under the same CO2 conditions, PSI was highly reduced after a transition from low to high light for 20 s. However, such PSI over-reduction greatly decreased when measured in 800 ppm CO2, indicating that elevated atmospheric CO2 facilitates the rapid oxidation of PSI under fluctuating light. Furthermore, after fluctuating light treatment, residual PSI activity was significantly higher in 800 ppm CO2 than in 400 ppm CO2, suggesting that elevated atmospheric CO2 mitigates PSI photoinhibition under fluctuating light. We further demonstrate that elevated CO2 does not affect PSI activity under fluctuating light via changes in non-photochemical quenching or cyclic electron transport, but rather from a rapid electron sink driven by CO2 fixation. Therefore, elevated CO2 mitigates PSI photoinhibition under fluctuating light at the acceptor rather than the donor side. Taken together, these observations indicate that elevated atmospheric CO2 can have large effects on thylakoid reactions under fluctuating light.

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 491
Author(s):  
Zulfira Rakhmankulova ◽  
Elena Shuyskaya ◽  
Kristina Toderich ◽  
Pavel Voronin

A significant increase in atmospheric CO2 concentration and associated climate aridization and soil salinity are factors affecting the growth, development, productivity, and stress responses of plants. In this study, the effect of ambient (400 ppm) and elevated (800 ppm) CO2 concentrations were evaluated on the C4 xero-halophyte Kochia prostrata treated with moderate salinity (200 mM NaCl) and polyethylene glycol (PEG)-induced osmotic stress. Our results indicated that plants grown at elevated CO2 concentration had different responses to osmotic stress and salinity. The synergistic effect of elevated CO2 and osmotic stress increased proline accumulation, but elevated CO2 did not mitigate the negative effects of osmotic stress on dark respiration intensity and photosystem II (PSII) efficiency. This indicates a stressful state, which is accompanied by a decrease in the efficiency of light reactions of photosynthesis and significant dissipative respiratory losses, thereby resulting in growth inhibition. Plants grown at elevated CO2 concentration and salinity showed high Na+ and proline contents, high water-use efficiency and time required to reach the maximum P700 oxidation level (PSI), and low dark respiration. Maintaining stable water balance, the efficient functioning of cyclic transport of PSI, and the reduction of dissipation costs contributed to an increase in dry shoot biomass (2-fold, compared with salinity at 400 ppm CO2). The obtained experimental data and PCA showed that elevated CO2 concentration improved the physiological parameters of K. prostrata under salinity.


2020 ◽  
Vol 126 (1) ◽  
pp. 179-190
Author(s):  
Karin S L Johansson ◽  
Mohamed El-Soda ◽  
Ellen Pagel ◽  
Rhonda C Meyer ◽  
Kadri Tõldsepp ◽  
...  

Abstract Background and Aims The stomatal conductance (gs) of most plant species decreases in response to elevated atmospheric CO2 concentration. This response could have a significant impact on plant water use in a future climate. However, the regulation of the CO2-induced stomatal closure response is not fully understood. Moreover, the potential genetic links between short-term (within minutes to hours) and long-term (within weeks to months) responses of gs to increased atmospheric CO2 have not been explored. Methods We used Arabidopsis thaliana recombinant inbred lines originating from accessions Col-0 (strong CO2 response) and C24 (weak CO2 response) to study short- and long-term controls of gs. Quantitative trait locus (QTL) mapping was used to identify loci controlling short- and long-term gs responses to elevated CO2, as well as other stomata-related traits. Key Results Short- and long-term stomatal responses to elevated CO2 were significantly correlated. Both short- and long-term responses were associated with a QTL at the end of chromosome 2. The location of this QTL was confirmed using near-isogenic lines and it was fine-mapped to a 410-kb region. The QTL did not correspond to any known gene involved in stomatal closure and had no effect on the responsiveness to abscisic acid. Additionally, we identified numerous other loci associated with stomatal regulation. Conclusions We identified and confirmed the effect of a strong QTL corresponding to a yet unknown regulator of stomatal closure in response to elevated CO2 concentration. The correlation between short- and long-term stomatal CO2 responses and the genetic link between these traits highlight the importance of understanding guard cell CO2 signalling to predict and manipulate plant water use in a world with increasing atmospheric CO2 concentration. This study demonstrates the power of using natural variation to unravel the genetic regulation of complex traits.


2014 ◽  
Vol 11 (9) ◽  
pp. 13957-13983 ◽  
Author(s):  
W. Wang ◽  
R. Nemani

Abstract. The increase in anthropogenic CO2 emissions largely followed an exponential path between 1850 and 2010, and the corresponding increases in atmospheric CO2 concentration were almost constantly proportional to the emissions by the so-called "airborne fraction". These observations suggest that the dynamics of atmospheric CO2 concentration through this time period may be properly approximated as a linear system. We demonstrate this hypothesis by deriving a linear box-model to describe carbon exchanges between the atmosphere and the surface reservoirs under the influence of disturbances such as anthropogenic CO2 emissions and global temperature changes. We show that the box model accurately simulates the observed atmospheric CO2 concentrations and growth rates across interannual to multi-decadal time scales. The model also allows us to analytically examine the dynamics of such changes/variations, linking its characteristic disturbance-response functions to bio-geophysically meaningful parameters. In particular, our results suggest that the elevated atmospheric CO2 concentrations have significantly promoted the gross carbon uptake by the terrestrial biosphere. However, such "fertilization" effects are partially offset by enhanced carbon release from surface reservoirs promoted by warmer temperatures. The result of these interactions appears to be a decline in net efficiency in sequestering atmospheric CO2 by ∼30% since 1960s. We believe that the linear modeling framework outlined in this paper provides a convenient tool to diagnose the observed atmospheric CO2 dynamics and monitor their future changes.


1999 ◽  
Vol 26 (8) ◽  
pp. 737 ◽  
Author(s):  
Marcus Schortemeyer ◽  
Owen K. Atkin ◽  
Nola McFarlane ◽  
John R. Evans

The interactive effects of nitrate supply and atmospheric CO2 concentration on growth, N2 fixation, dry matter and nitrogen partitioning in the leguminous tree Acacia melanoxylon R.Br. were studied. Seedlings were grown hydroponically in controlled-environment cabinets for 5 weeks at seven 15N-labelled nitrate levels, ranging from 3 to 6400 mmol m–3. Plants were exposed to ambient (~350 µmol mol–1) or elevated (~700 µmol mol–1) atmospheric CO2 for 6 weeks. Total plant dry mass increased strongly with nitrate supply. The proportion of nitrogen derived from air decreased with increasing nitrate supply. Plants grown under either ambient or elevated CO2 fixed the same amount of nitrogen per unit nodule dry mass (16.6 mmol N per g nodule dry mass) regardless of the nitrogen treatment. CO2 concentration had no effect on the relative contribution of N2 fixation to the nitrogen yield of plants. Plants grown with ≥50 mmol m–3 N and elevated CO2 had approximately twice the dry mass of those grown with ambient CO2 after 42 days. The rates of net CO2 assimilation under growth conditions were higher per unit leaf area for plants grown under elevated CO2. Elevated CO2 also decreased specific foliage area, due to an increase in foliage thickness and density. Dry matter partitioning between plant organs was affected by ontogeny and nitrogen status of the plants, but not by CO2 concentration. In contrast, plants grown under elevated CO2 partitioned more of their nitrogen to roots. This could be attributed to reduced nitrogen concentrations in foliage grown under elevated CO2.


Sign in / Sign up

Export Citation Format

Share Document