scholarly journals Class 1 Histone Deacetylases and Ataxia-Telangiectasia Mutated Kinase Control the Survival of Murine Pancreatic Cancer Cells upon dNTP Depletion

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2520
Author(s):  
Alexandra Nguyen ◽  
Melanie Dzulko ◽  
Janine Murr ◽  
Yun Yen ◽  
Günter Schneider ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with a dismal prognosis. Here, we show how an inhibition of de novo dNTP synthesis by the ribonucleotide reductase (RNR) inhibitor hydroxyurea and an inhibition of epigenetic modifiers of the histone deacetylase (HDAC) family affect short-term cultured primary murine PDAC cells. We used clinically relevant doses of hydroxyurea and the class 1 HDAC inhibitor entinostat. We analyzed the cells by flow cytometry and immunoblot. Regarding the induction of apoptosis and DNA replication stress, hydroxyurea and the novel RNR inhibitor COH29 are superior to the topoisomerase-1 inhibitor irinotecan which is used to treat PDAC. Entinostat promotes the induction of DNA replication stress by hydroxyurea. This is associated with an increase in the PP2A subunit PR130/PPP2R3A and a reduction of the ribonucleotide reductase subunit RRM2 and the DNA repair protein RAD51. We further show that class 1 HDAC activity promotes the hydroxyurea-induced activation of the checkpoint kinase ataxia-telangiectasia mutated (ATM). Unlike in other cell systems, ATM is pro-apoptotic in hydroxyurea-treated murine PDAC cells. These data reveal novel insights into a cytotoxic, ATM-regulated, and HDAC-dependent replication stress program in PDAC cells.

DNA Repair ◽  
2019 ◽  
Vol 83 ◽  
pp. 102674 ◽  
Author(s):  
Rotem Cohen ◽  
Shira Milo ◽  
Sushma Sharma ◽  
Alon Savidor ◽  
Shay Covo

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Ariana Ishaq ◽  
Lillian Nguyen ◽  
Taylor Sheppard ◽  
Elizabeth Velasquez ◽  
Youssef Ahmed ◽  
...  

2013 ◽  
Vol 74 (1) ◽  
pp. 212-223 ◽  
Author(s):  
Maohua Xie ◽  
Yun Yen ◽  
Taofeek K. Owonikoko ◽  
Suresh S. Ramalingam ◽  
Fadlo R. Khuri ◽  
...  

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii411-iii411
Author(s):  
Ahmed Abdel-Hafiz ◽  
Krishna Madhavan ◽  
Ilango Balakrishnan ◽  
Angela Pierce ◽  
Dong Wang ◽  
...  

Abstract Group 3 medulloblastoma tumors (Myc-MB), and particularly the 3γ subtype, have the worst prognosis and show a 5-year overall survival of less than 40%. Group 3 tumors are often accompanied by Myc amplification and have a higher rate of metastatic disease and relapse. Unfortunately, therapeutic strategies to target Mychave remained elusive. Further, the relapse of the MB has been linked to DNA replication stress. Ataxia telangiectasia and Rad3-related protein (ATR) senses persistent DNA damage, which arises due to replication stress, and activates damage checkpoints, thereby leading to increased cell survival. ATR is highly expressed in MB and is thought to contribute to undisturbed DNA replication to protect genomic integrity. Yet, the exact underlying mechanisms involving ATR are still unclear in MB. Inhibition of ATR (ATRi) using the ATR inhibitor, AZD6738, suppressed clonogenicity and cell self-renewal in Myc-MB. ATRi in Myc-MB cell lines downregulated Chk1 and upregulated P21. ATRi also induced cell cycle arrest and increased apoptosis in Myc-MB cell lines. Further, mice with orthotopic xenografts treated with ATR inhibitor survived significantly longer than control mice. High-throughput drug screening showed ATRi to be synergistic with chemotherapeutic agents including gemcitabine, cisplatin and topotecan. The treatment of Myc-MB cells with ATR inhibitor in combination with gemcitabine and with radiation increased in expression of DNA damage markers. These findings emphasize the role of ATR in alleviating DNA replication stress and that its inhibition is critical to the treatment of Myc-MB.


Genes ◽  
2016 ◽  
Vol 7 (8) ◽  
pp. 51 ◽  
Author(s):  
Jun Zhang ◽  
Qun Dai ◽  
Dongkyoo Park ◽  
Xingming Deng

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tara Al Zubaidi ◽  
O. H. Fiete Gehrisch ◽  
Marie-Michelle Genois ◽  
Qi Liu ◽  
Shan Lu ◽  
...  

AbstractMutant KRAS is a common tumor driver and frequently confers resistance to anti-cancer treatments such as radiation. DNA replication stress in these tumors may constitute a therapeutic liability but is poorly understood. Here, using single-molecule DNA fiber analysis, we first characterized baseline replication stress in a panel of unperturbed isogenic and non-isogenic cancer cell lines. Correlating with the observed enhanced replication stress we found increased levels of cytosolic double-stranded DNA in KRAS mutant compared to wild-type cells. Yet, despite this phenotype replication stress-inducing agents failed to selectively impact KRAS mutant cells, which were protected by CHK1. Similarly, most exogenous stressors studied did not differentially augment cytosolic DNA accumulation in KRAS mutant compared to wild-type cells. However, we found that proton radiation was able to slow fork progression and preferentially induce fork stalling in KRAS mutant cells. Proton treatment also partly reversed the radioresistance associated with mutant KRAS. The cellular effects of protons in the presence of KRAS mutation clearly contrasted that of other drugs affecting replication, highlighting the unique nature of the underlying DNA damage caused by protons. Taken together, our findings provide insight into the replication stress response associated with mutated KRAS, which may ultimately yield novel therapeutic opportunities.


2020 ◽  
Author(s):  
Takahiko Murayama ◽  
Yasuto Takeuchi ◽  
Kaoru Yamawaki ◽  
Toyoaki Natsume ◽  
Li Mengjiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document