scholarly journals Structural and (Pseudo-)Enzymatic Properties of Neuroglobin: Its Possible Role in Neuroprotection

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3366
Author(s):  
Giovanna De Simone ◽  
Diego Sbardella ◽  
Francesco Oddone ◽  
Alessandra Pesce ◽  
Massimo Coletta ◽  
...  

Neuroglobin (Ngb), the third member of the globin family, was discovered in human and murine brains in 2000. This monomeric globin is structurally similar to myoglobin (Mb) and hemoglobin (Hb) α and β subunits, but it hosts a bis-histidyl six-coordinated heme-Fe atom. Therefore, the heme-based reactivity of Ngb is modulated by the dissociation of the distal HisE7-heme-Fe bond, which reflects in turn the redox state of the cell. The high Ngb levels (~100–200 μM) present in the retinal ganglion cell layer and in the optic nerve facilitate the O2 buffer and delivery. In contrast, the very low levels of Ngb (~1 μM) in most tissues and organs support (pseudo-)enzymatic properties including NO/O2 metabolism, peroxynitrite and free radical scavenging, nitrite, hydroxylamine, hydrogen sulfide reduction, and the nitration of aromatic compounds. Here, structural and (pseudo-)enzymatic properties of Ngb, which are at the root of tissue and organ protection, are reviewed, envisaging a possible role in the protection from neuronal degeneration of the retina and the optic nerve.

2015 ◽  
Vol 56 (10) ◽  
pp. 6095 ◽  
Author(s):  
Francisco M. Nadal-Nicolás ◽  
Paloma Sobrado-Calvo ◽  
Manuel Jiménez-López ◽  
Manuel Vidal-Sanz ◽  
Marta Agudo-Barriuso

2018 ◽  
Vol 59 (1) ◽  
pp. 370 ◽  
Author(s):  
Satoru Ueno ◽  
Azusa Yoneshige ◽  
Yoshiki Koriyama ◽  
Man Hagiyama ◽  
Yoshikazu Shimomura ◽  
...  

In the model of experimentally induced ischemia- reperfusion injury, retinal ganglion cells (RGC) expressing the gene AP-1 result apoptosis. The inflammation mediators, such as TNF-α, IL-1β, etc. lead RGC to apoptosis, that may lead the thinning of the retinal ganglion cell layer (RGCL) followed by the optic nerve fiber layer (RNFL) thinning. In his study we observed retinal ganglion cell and optic nerve fiber layer thinning in patients with various uveitis, that the pathological features appear obliterative vasculitis, using the optical coherence tomography (OCT) imaging analyses. Subjects were 182 eyes of 91 uveitis patients without glaucoma. Comparison were patients with normal tension glaucoma (NTG). Image analyses were conducted with 3D OCT-2000. As a result average RGCL thickness values in the patients with uveitis were significantly(p<0.01) thinner than those in healthies. Cycle scan findings of RNFL around the optic disc in the patients with uveitis showed significant thinning especially at nasal side. The retinal ganglion cell layer thinning followed by the retinal nerve fiber thinning in the patients with various uveitis was observed, and the thinning was similar to that in patients with glaucoma. The observation of RGCL and RNFL thickness may be useful for the diagnosis and the follow-up of uveitis.


2006 ◽  
Vol 23 (2) ◽  
pp. 257-273 ◽  
Author(s):  
HELENA J. BAILES ◽  
ANN E.O. TREZISE ◽  
SHAUN P. COLLIN

Australian lungfishNeoceratodus forsterimay be the closest living relative to the first tetrapods and yet little is known about their retinal ganglion cells. This study reveals that lungfish possess a heterogeneous population of ganglion cells distributed in a horizontal streak across the retinal meridian, which is formed early in development and maintained through to adult stages. The number and complement of both ganglion cells and a population of putative amacrine cells within the ganglion cell layer are examined using retrograde labelling from the optic nerve and transmission electron-microscopic analysis of axons within the optic nerve. At least four types of retinal ganglion cells are present and lie predominantly within a thin ganglion cell layer, although two subpopulations are identified, one within the inner plexiform and the other within the inner nuclear layer. A subpopulation of retinal ganglion cells comprising up to 7% of the total population are significantly larger (>400 μm2) and are characterized as giant or alpha-like cells. Up to 44% of cells within the retinal ganglion cell layer represent a population of presumed amacrine cells. The optic nerve is heavily fasciculated and the proportion of myelinated axons increases with body length from 17% in subadults to 74% in adults. Spatial resolving power, based on ganglion cell spacing, is low (1.6–1.9 cycles deg−1,n= 2) and does not significantly increase with growth. This represents the first detailed study of retinal ganglion cells in sarcopterygian fish, and reveals that, despite variation amongst animal groups, trends in ganglion cell density distribution and characteristics of cell types were defined early in vertebrate evolution.


Sign in / Sign up

Export Citation Format

Share Document