scholarly journals Differential Roles of Lipin1 and Lipin2 in the Hepatitis C Virus Replication Cycle

Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1456 ◽  
Author(s):  
Victoria Castro ◽  
Gema Calvo ◽  
Ginés Ávila-Pérez ◽  
Marlène Dreux ◽  
Pablo Gastaminza

Although their origin, nature and structure are not identical, a common feature of positive-strand RNA viruses is their ability to subvert host lipids and intracellular membranes to generate replication and assembly complexes. Recently, lipin1, a cellular enzyme that converts phosphatidic acid into diacylglycerol, has been implicated in the formation of the membranous web that hosts hepatitis C virus (HCV) replicase. In the liver, lipin1 cooperates with lipin2 to maintain glycerolipid homeostasis. We extended our previous study of the lipin family on HCV infection, by determining the impact of the lipin2 silencing on viral replication. Our data reveal that lipin2 silencing interferes with HCV virion secretion at late stages of the infection, without significantly affecting viral replication or assembly. Moreover, uninfected lipin2-, but not lipin1-deficient cells display alterations in mitochondrial and Golgi apparatus morphology, suggesting that lipin2 contributes to the maintenance of the overall organelle architecture. Finally, our data suggest a broader function of lipin2 for replication of HCV and other RNA viruses, in contrast with the specific impact of lipin1 silencing on HCV replication. Overall, this study reveals distinctive functions of lipin1 and lipin2 in cells of hepatic origin, a context in which they are often considered functionally redundant.

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 30
Author(s):  
Victoria Castro ◽  
Gema Calvo ◽  
Ginés Ávila-Pérez ◽  
Marlène Dreux ◽  
Pablo Gastaminza

Although their origin, nature and structure are not identical, a common feature of positive-strand RNA viruses is their ability to subvert host lipids and intracellular membranes to generate replication and assembly complexes. Recently, lipin1, a cellular enzyme that converts phosphatidate into diacylglycerol, has been involved in the formation of the membranous web that hosts hepatitis C virus (HCV) replicase. In the liver, lipin1 cooperates with lipin2 to maintain glycerolipid homeostasis. We extended our previous study of the lipin family in HCV infection by determining the impact of the lipin2 silencing on viral replication. In contrast to the specific impact of lipin1 silencing on HCV replication, our data suggest a broader function of lipin2 not only in HCV infection, but also for the replication of other RNA viruses. Moreover, uninfected lipin2- but not lipin1-deficient cells display alterations in mitochondrial and Golgi morphology, suggesting that lipin2 contributes to the maintenance of the overall organelle architecture. Coinciding with Golgi fragmentation, our data reveal that lipin2 silencing mainly interferes with HCV virion secretion at late stages of the infection without significantly affecting viral replication or assembly. Overall, this study reveals distinctive functions of lipin1 and lipin2 in cells of hepatic origin, a context in which they are often considered functionally redundant.


2008 ◽  
Vol 82 (23) ◽  
pp. 11803-11812 ◽  
Author(s):  
Shadi Salloum ◽  
Cesar Oniangue-Ndza ◽  
Christoph Neumann-Haefelin ◽  
Laura Hudson ◽  
Silvia Giugliano ◽  
...  

ABSTRACT The inherent sequence diversity of the hepatitis C virus (HCV) represents a major hurdle for the adaptive immune system to control viral replication. Mutational escape within targeted CD8 epitopes during acute HCV infection has been well documented and is one possible mechanism for T-cell failure. HLA-B*08 was recently identified as one HLA class I allele associated with spontaneous clearance of HCV replication. Selection of escape mutations in the immunodominant HLA-B*08-restricted epitope HSKKKCDEL1395-1403 was observed during acute infection. However, little is known about the impact of escape mutations in this epitope on viral replication capacity. Their previously reported reversion back toward the consensus residue in patients who do not possess the B*08 allele suggests that the consensus sequence in this epitope is advantageous for viral replication in the absence of immune pressure. The aim of this study was to determine the impact of mutational escape from this immunodominant epitope on viral replication. We analyzed it with a patient cohort with chronic HCV genotype 1b infection and in a single-source outbreak (genotype 1b). Sequence changes in this highly conserved region are rare and selected almost exclusively in the presence of the HLA-B*08 allele. When tested in the subgenomic replicon (Con1), the observed mutations reduce viral replication compared with the prototype sequence. The results provide direct evidence that escape mutations in this epitope are associated with fitness costs and that the antiviral effect of HLA-B*08-restricted T cells is sufficiently strong to force the virus to adopt a relatively unfavorable sequence.


mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Inés Romero-Brey ◽  
Carola Berger ◽  
Stephanie Kallis ◽  
Androniki Kolovou ◽  
David Paul ◽  
...  

ABSTRACTInduction of membrane rearrangements in the cytoplasm of infected cells is a hallmark of positive-strand RNA viruses. These altered membranes serve as scaffolds for the assembly of viral replication factories (RFs). We have recently shown that hepatitis C virus (HCV) infection induces endoplasmic reticulum-derived double-membrane vesicles (DMVs) representing the major constituent of the RF within the infected cell. RF formation requires the concerted action of nonstructural action of nonstructural protein (NS)3, -4A, protein (NS)3 -4A, -4B, -5A, and -5B. Although the sole expression of NS5A is sufficient to induce DMV formation, its efficiency is very low. In this study, we dissected the determinants within NS5A responsible for DMV formation and found that RNA-binding domain 1 (D1) and the amino-terminal membrane anchor are indispensable for this process. In contrast, deletion of NS5A D2 or D3 did not affect DMV formation but disrupted RNA replication and virus assembly, respectively. To identifycis- andtrans-acting factors of DMV formation, we established atranscleavage assay. We found that induction of DMVs requires full-length NS3, whereas a helicase-lacking mutant was unable to trigger DMV formation in spite of efficient polyprotein cleavage. Importantly, a mutation accelerating cleavage kinetics at the NS4B-5A site diminished DMV formation, while the insertion of an internal ribosome entry site mimicking constitutive cleavage at this boundary completely abolished this process. These results identify key determinants governing the biogenesis of the HCV RF with possible implications for our understanding of how RFs are formed in other positive-strand RNA viruses.IMPORTANCELike all positive-strand RNA viruses, hepatitis C virus (HCV) extensively reorganizes intracellular membranes to allow efficient RNA replication. Double-membrane vesicles (DMVs) that putatively represent sites of HCV RNA amplification are induced by the concerted action of viral and cellular factors. However, the contribution of individual proteins to this process remains poorly understood. Here we identify determinants in the HCV replicase that are required for DMV biogenesis. Major contributors to this process are domain 1 of nonstructural protein 5A and the helicase domain of nonstructural protein 3. In addition, efficient DMV induction depends onciscleavage of the viral polyprotein, as well as tightly regulated cleavage kinetics. These results identify key determinants governing the biogenesis of the HCV replication factory with possible implications for our understanding of how this central compartment is formed in other positive-strand RNA viruses.


2000 ◽  
Vol 74 (4) ◽  
pp. 2017-2022 ◽  
Author(s):  
Weidong Zhong ◽  
Annette S. Uss ◽  
Eric Ferrari ◽  
Johnson Y. N. Lau ◽  
Zhi Hong

ABSTRACT RNA-dependent RNA polymerase (RdRp) encoded by positive-strand RNA viruses is critical to the replication of viral RNA genome. Like other positive-strand RNA viruses, replication of hepatitis C virus (HCV) RNA is mediated through a negative-strand intermediate, which is generated through copying the positive-strand genomic RNA. Although it has been demonstrated that HCV NS5B alone can direct RNA replication through a copy-back primer at the 3′ end, de novo initiation of RNA synthesis is likely to be the mode of RNA replication in infected cells. In this study, we demonstrate that a recombinant HCV NS5B protein has the ability to initiate de novo RNA synthesis in vitro. The NS5B used HCV 3′ X-tail RNA (98 nucleotides) as the template to synthesize an RNA product of monomer size, which can be labeled by [γ-32P]nucleoside triphosphate. The de novo initiation activity was further confirmed by using small synthetic RNAs ending with dideoxynucleotides at the 3′ termini. In addition, HCV NS5B preferred GTP as the initiation nucleotide. The optimal conditions for the de novo initiation activity have been determined. Identification and characterization of the de novo priming or initiation activity by HCV NS5B provides an opportunity to screen for inhibitors that specifically target the initiation step.


2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Philipp Schult ◽  
Maren Nattermann ◽  
Chris Lauber ◽  
Stefan Seitz ◽  
Volker Lohmann

ABSTRACT Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo. Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5′ untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps. IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo. Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.


2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Lingbao Kong ◽  
Haruyo Aoyagi ◽  
Zibing Yang ◽  
Tao Ouyang ◽  
Mami Matsuda ◽  
...  

ABSTRACT A number of positive-strand RNA viruses, such as hepatitis C virus (HCV) and poliovirus, use double-membrane vesicles (DMVs) as replication sites. However, the role of cellular proteins in DMV formation during virus replication is poorly understood. HCV NS4B protein induces the formation of a “membranous web” structure that provides a platform for the assembly of viral replication complexes. Our previous screen of NS4B-associated host membrane proteins by dual-affinity purification, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and small interfering RNA (siRNA) methods revealed that the Surfeit 4 (Surf4) gene, which encodes an integral membrane protein, is involved in the replication of the JFH1 subgenomic replicon. Here, we investigated in detail the effect of Surf4 on HCV replication. Surf4 affects HCV replication in a genotype-independent manner, whereas HCV replication does not alter Surf4 expression. The influence of Surf4 on HCV replication indicates that while Surf4 regulates replication, it has no effect on entry, translation, assembly, or release. Analysis of the underlying mechanism showed that Surf4 is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs and the structural integrity of RNA replication complexes. Surf4 also participates in the replication of poliovirus, which uses DMVs as replication sites, but it has no effect on the replication of dengue virus, which uses invaginated/sphere-type vesicles as replication sites. These findings clearly show that Surf4 is a novel cofactor that is involved in the replication of positive-strand RNA viruses using DMVs as RNA replication sites, which provides valuable clues for DMV formation during positive-strand RNA virus replication. IMPORTANCE Hepatitis C virus (HCV) NS4B protein induces the formation of a membranous web (MW) structure that provides a platform for the assembly of viral replication complexes. The main constituents of the MW are double-membrane vesicles (DMVs). Here, we found that the cellular protein Surf4, which maintains endoplasmic reticulum (ER)-Golgi intermediate compartments and the Golgi compartment, is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs. Moreover, Surf4 participates in the replication of poliovirus, which uses DMVs as replication sites, but has no effect on the replication of dengue virus, which uses invaginated vesicles as replication sites. These results indicate that the cellular protein Surf4 is involved in the replication of positive-strand RNA viruses that use DMVs as RNA replication sites, providing new insights into DMV formation during virus replication and potential targets for the diagnosis and treatment of positive-strand RNA viruses.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1039
Author(s):  
Dandan Liu ◽  
Philip R. Tedbury ◽  
Shuiyun Lan ◽  
Andrew D. Huber ◽  
Maritza N. Puray-Chavez ◽  
...  

RNA viruses are highly successful pathogens and are the causative agents for many important diseases. To fully understand the replication of these viruses it is necessary to address the roles of both positive-strand RNA ((+)RNA) and negative-strand RNA ((−)RNA), and their interplay with viral and host proteins. Here we used branched DNA (bDNA) fluorescence in situ hybridization (FISH) to stain both the abundant (+)RNA and the far less abundant (−)RNA in both hepatitis C virus (HCV)- and Zika virus-infected cells, and combined these analyses with visualization of viral proteins through confocal imaging. We were able to phenotypically examine HCV-infected cells in the presence of uninfected cells and revealed the effect of direct-acting antivirals on HCV (+)RNA, (−)RNA, and protein, within hours of commencing treatment. Herein, we demonstrate that bDNA FISH is a powerful tool for the study of RNA viruses that can provide insights into drug efficacy and mechanism of action.


Sign in / Sign up

Export Citation Format

Share Document