scholarly journals Impact of JNK and Its Substrates on Dendritic Spine Morphology

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 440 ◽  
Author(s):  
Emilia Komulainen ◽  
Artemis Varidaki ◽  
Natalia Kulesskaya ◽  
Hasan Mohammad ◽  
Christel Sourander ◽  
...  

The protein kinase JNK1 exhibits high activity in the developing brain, where it regulates dendrite morphology through the phosphorylation of cytoskeletal regulatory proteins. JNK1 also phosphorylates dendritic spine proteins, and Jnk1-/- mice display a long-term depression deficit. Whether JNK1 or other JNKs regulate spine morphology is thus of interest. Here, we characterize dendritic spine morphology in hippocampus of mice lacking Jnk1-/- using Lucifer yellow labelling. We find that mushroom spines decrease and thin spines increase in apical dendrites of CA3 pyramidal neurons with no spine changes in basal dendrites or in CA1. Consistent with this spine deficit, Jnk1-/- mice display impaired acquisition learning in the Morris water maze. In hippocampal cultures, we show that cytosolic but not nuclear JNK, regulates spine morphology and expression of phosphomimicry variants of JNK substrates doublecortin (DCX) or myristoylated alanine-rich C kinase substrate-like protein-1 (MARCKSL1), rescue mushroom, thin, and stubby spines differentially. These data suggest that physiologically active JNK controls the equilibrium between mushroom, thin, and stubby spines via phosphorylation of distinct substrates.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Audrey J. Weber ◽  
Ashley B. Adamson ◽  
Kelsey M. Greathouse ◽  
Julia P. Andrade ◽  
Cameron D. Freeman ◽  
...  

AbstractRho-associated kinase isoform 2 (ROCK2) is an attractive drug target for several neurologic disorders. A critical barrier to ROCK2-based research and therapeutics is the lack of a mouse model that enables investigation of ROCK2 with spatial and temporal control of gene expression. To overcome this, we generated ROCK2fl/fl mice. Mice expressing Cre recombinase in forebrain excitatory neurons (CaMKII-Cre) were crossed with ROCK2fl/fl mice (Cre/ROCK2fl/fl), and the contribution of ROCK2 in behavior as well as dendritic spine morphology in the hippocampus, medial prefrontal cortex (mPFC), and basolateral amygdala (BLA) was examined. Cre/ROCK2fl/fl mice spent reduced time in the open arms of the elevated plus maze and increased time in the dark of the light–dark box test compared to littermate controls. These results indicated that Cre/ROCK2fl/fl mice exhibited anxiety-like behaviors. To examine dendritic spine morphology, individual pyramidal neurons in CA1 hippocampus, mPFC, and the BLA were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. In dorsal CA1, Cre/ROCK2fl/fl mice displayed significantly increased thin spine density on basal dendrites and reduced mean spine head volume across all spine types on apical dendrites. In ventral CA1, Cre/ROCK2fl/fl mice exhibited significantly increased spine length on apical dendrites. Spine density and morphology were comparable in the mPFC and BLA between both genotypes. These findings suggest that neuronal ROCK2 mediates spine density and morphology in a compartmentalized manner among CA1 pyramidal cells, and that in the absence of ROCK2 these mechanisms may contribute to anxiety-like behaviors.


Hippocampus ◽  
2012 ◽  
Vol 23 (1) ◽  
pp. 40-52 ◽  
Author(s):  
Kristina Leuner ◽  
Wei Li ◽  
Michelle D. Amaral ◽  
Stephanie Rudolph ◽  
Gaston Calfa ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruslan Stanika ◽  
Marta Campiglio ◽  
Alexandra Pinggera ◽  
Amy Lee ◽  
Jörg Striessnig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document