scholarly journals Heat Exchanger Network Retrofit of an Oleochemical Plant through a Cost and Energy Efficiency Approach

2021 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Valli Trisha ◽  
Kai Seng Koh ◽  
Lik Yin Ng ◽  
Vui Soon Chok

Limited research of heat integration has been conducted in the oleochemical field. This paper attempts to evaluate the performance of an existing heat exchanger network (HEN) of an oleochemical plant at 600 tonnes per day (TPD) in Malaysia, in which the emphases are placed on the annual saving and reduction in energy consumption. Using commercial HEN numerical software, ASPEN Energy Analyzer v10.0, it was found that the performance of the current HEN in place is excellent, saving over 80% in annual costs and reducing energy consumption by 1,882,711 gigajoule per year (GJ/year). Further analysis of the performance of the HEN was performed to identify the potential optimisation of untapped heating/cooling process streams. Two cases, which are the most cost-effective and energy efficient, were proposed with positive results. However, the second case performed better than the first case, at a lower payback time (0.83 year) and higher annual savings (0.20 million USD/year) with the addition of one heat exchanger at a capital cost of USD 134,620. The first case had a higher payback time (4.64 years), a lower annual saving (0.05 million USD/year) and three additional heaters at a capital cost of USD 193,480. This research has provided a new insight into the oleochemical industry in which retrofitting the HEN can further reduce energy consumption, which in return will reduce the overall production cost of oleochemical commodities. This is particularly crucial in making the product more competitive in its pricing in the global market.

2012 ◽  
Author(s):  
Sharifah Rafidah Wan Alwi ◽  
Muhammad Azan Tamar Jaya ◽  
Zainuddin Abdul Manan

Kilang penapisan minyak sawit lazimnya melibatkan proses penggunaan tenaga yang tinggi. Peningkatan kecekapan tenaga adalah amat penting bagi memastikan keuntungan tercapai. Kertas kerja ini menggunakan teknik analisis jepit bagi memaksimumkan penggunaan semula haba dan meningkatkan kecekapan sistem rangkaian haba sedia ada di kilang penghasilan minyak sawit, tertakluk kepada kekangan–kekangan proses. Langkah–langkah yang terlibat ialah penetapan sasaran guna semula haba maksimum diikuti dengan reka bentuk rangkaian haba yang ekonomik. Aplikasi teknik berkenaan kepada kilang penghasilan minyak sawit telah menghasilkan pengurangan penggunaan haba panas dan sejuk sebanyak 700 kW (21%), atau penjimatan kos utiliti sebanyak RM370,787, dengan pelaburan kapital sebanyak RM656,293 dan jangka pulangan balik selama 1.77 tahun. Kata kunci: Analisis jepit; minyak kelapa sawit; sedia ada; rangkaian pemindahan haba; kitar semula haba maksimum A palm oil refinery involves energy–intensive processes. Maximizing thermal efficiency of palm oil refinery is crucial for the plant profitability. This work implements a pinch analysis retrofit technique to maximize heat recovery and thermal efficiency of a palm oil refinery, subject to the existing process constraints. The procedures involve setting the maximum heat recovery targets and cost–effective retrofit of the heat exchanger network (HEN). Application of the technique on a palm oil refinery results in reduction of 700 kW (21%) heating and cooling loads or a saving of RM370,787, incurring a capital investment of about RM656,293 and a payback period of 1.77 years. Key words: Pinch analysis; palm oil; retrofit; heat exchanger network; maximum heat recovery


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 695
Author(s):  
Yue Xu ◽  
Heri Ambonisye Kayange ◽  
Guomin Cui

The aim of heat exchanger network synthesis is to design a cost-effective network configuration with the maximum energy recovery. Therefore, a nodes-based non-structural model considering a series structure (NNM) is proposed. The proposed model utilizes a simple principle based on setting the nodes on streams such that to achieve optimization of a heat exchanger network synthesis (HENS) problem. The proposed model uses several nodes to quantify the possible positions of heat exchangers so that the matching between hot and cold streams is random and free. Besides the stream splits, heat exchangers with series structures are introduced in the proposed model. The heuristic algorithm used to solve NNM model is a random walk algorithm with compulsive evolution. The proposed model is used to solve four scale cases of a HENS problem, the results show that the costs obtained by NNM model can be respectively lower 3226 $/a(Case 1), 11,056 $/a(Case 2), 2463 $/a(Case 3), 527 $/a(Case 4) than the best costs listed in literature.


2017 ◽  
Vol 2 (1) ◽  
pp. 87
Author(s):  
Zulfan Adi Putra

Pinch analysis has been known as one of the tools for smart energy management. This technique has successfully been applied in more than three decades in various industries. Here, the purpose of this study was to describe how to use pinch analysis for improving heat exchanger network design of a revamped chemical plant. In a revamping project of a chemical plant, the pinch analysis is applied to find a better design. The analysis reveals that the revamped case can be further improved to achieve more energy saving. This is done by applying one of the golden rules in pinch analysis, which is not to transfer heat across the pinch. The proposed solution is rather simple and straightforward, leading to only few months of payback period and 165 k€ per annual saving.


Author(s):  
Jinchang Liu ◽  
Pingping Zhang ◽  
Qiang Xie ◽  
Dingcheng Liang ◽  
Lei Bai

AbstractThe heat exchanger network (HEN) in a syngas-to-methanol process was designed and optimized based on pinch technology under stable operating conditions to balance the energy consumption and economic gain. In actual industrial processes, fluctuations in production inevitably affect the stable operation of HENs. A flexibility analysis of the HEN was carried out to minimize such disturbances using the downstream paths method. The results show that two-third of the downstream paths cannot meet flexibility requirements, indicating that the HEN does not have enough flexibility to accommodate the disturbances in actual production. A flexible HEN was then designed with the method of dividing and subsequent merging of streams, which led to 13.89% and 20.82% reductions in energy consumption and total cost, respectively. Owing to the sufficient area margin and additional alternative heat exchangers, the flexible HEN was able to resist interference and maintain production stability and safety, with the total cost increasing by just 4.08%.


2019 ◽  
Vol 152 ◽  
pp. 184-195 ◽  
Author(s):  
Yue Xu ◽  
Guomin Cui ◽  
Weidong Deng ◽  
Yuan Xiao ◽  
Heri Kayange Ambonisye

2020 ◽  
Author(s):  
Jinchang Liu ◽  
Pingping Zhang ◽  
Qiang Xie ◽  
Dingcheng Liang ◽  
Lei Bai

Abstract The heat exchanger network (HEN) of syngas-to-methanol process was designed and optimized based on pinch technology under the stable operation conditions to balance the energy consumption and economic gain. Inevitably, the fluctuations of production affect the stable operation of HEN in real industrial processes. The flexibility analysis of HEN was carried out in this study to minimize such disturbances by using the downstream paths method. The results show that 2/3 downstream paths cannot meet flexibility requirements, indicating that HEN doesn’t have enough flexibility to accommodate the disturbances in the actual production. The flexible HEN was then designed with the methods of dividing and subsequent merging, which led to 13.89% and 20.82% reduction in energy consumption and total cost, respectively. Thanks to enough area margin and additional alternative heat exchangers, the flexible HEN is found to be able to resist interferences and maintain the production stability and safety, only sacrificing the increase of total cost increase by 4.08%.


Sign in / Sign up

Export Citation Format

Share Document