Cost–Effective Retrofit Of A Palm Oil Refinery Using Pinch Analysis

2012 ◽  
Author(s):  
Sharifah Rafidah Wan Alwi ◽  
Muhammad Azan Tamar Jaya ◽  
Zainuddin Abdul Manan

Kilang penapisan minyak sawit lazimnya melibatkan proses penggunaan tenaga yang tinggi. Peningkatan kecekapan tenaga adalah amat penting bagi memastikan keuntungan tercapai. Kertas kerja ini menggunakan teknik analisis jepit bagi memaksimumkan penggunaan semula haba dan meningkatkan kecekapan sistem rangkaian haba sedia ada di kilang penghasilan minyak sawit, tertakluk kepada kekangan–kekangan proses. Langkah–langkah yang terlibat ialah penetapan sasaran guna semula haba maksimum diikuti dengan reka bentuk rangkaian haba yang ekonomik. Aplikasi teknik berkenaan kepada kilang penghasilan minyak sawit telah menghasilkan pengurangan penggunaan haba panas dan sejuk sebanyak 700 kW (21%), atau penjimatan kos utiliti sebanyak RM370,787, dengan pelaburan kapital sebanyak RM656,293 dan jangka pulangan balik selama 1.77 tahun. Kata kunci: Analisis jepit; minyak kelapa sawit; sedia ada; rangkaian pemindahan haba; kitar semula haba maksimum A palm oil refinery involves energy–intensive processes. Maximizing thermal efficiency of palm oil refinery is crucial for the plant profitability. This work implements a pinch analysis retrofit technique to maximize heat recovery and thermal efficiency of a palm oil refinery, subject to the existing process constraints. The procedures involve setting the maximum heat recovery targets and cost–effective retrofit of the heat exchanger network (HEN). Application of the technique on a palm oil refinery results in reduction of 700 kW (21%) heating and cooling loads or a saving of RM370,787, incurring a capital investment of about RM656,293 and a payback period of 1.77 years. Key words: Pinch analysis; palm oil; retrofit; heat exchanger network; maximum heat recovery

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3478 ◽  
Author(s):  
Sofie Marton ◽  
Elin Svensson ◽  
Simon Harvey

In many energy-intensive industrial process plants, significant improvements in energy efficiency can be achieved through increased heat recovery. However, retrofitting plants for heat integration purposes can affect process operability. The aim of this paper is to present a comprehensive overview of such issues by systematically relating different types of heat recovery retrofit measures to a range of technical barriers associated with process operability and practical implementation of the measures. The paper presents a new approach for this kind of study, which can be applied in the early-stage screening of heat integration retrofit measures. This approach accounts for the importance of a number of selected operability factors and their relative significance. The work was conducted in the form of a case study at a large oil refinery. Several conceptual heat exchanger network retrofit design proposals were prepared and discussed during semi-structured interviews with technical staff at the refinery. The results show that many operability and practical implementation factors, such as spatial limitations, pressure drops and non-energy benefits, influence the opportunities for implementation of different types of heat exchanger network retrofit measures. The results indicate that it is valuable to consider these factors at an early stage when designing candidate heat exchanger network retrofit measures. The interview-based approach developed in this work can be applied to other case studies for further confirmation of the results.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 594 ◽  
Author(s):  
Ainur Munirah Hafizan ◽  
Jiří Jaromír Klemeš ◽  
Sharifah Rafidah Wan Alwi ◽  
Zainuddin Abdul Manan ◽  
Mohd Kamaruddin Abd Hamid

The design of heat exchanger networks (HEN) in the process industry has largely focused on minimisation of operating and capital costs using techniques such as pinch analysis or mathematical modelling. Aspects of operability and flexibility, including issues of disturbances affecting downstream processes during the operation of highly integrated HEN, still need development. This work presents a methodology to manage temperature disturbances in a HEN design to achieve maximum heat recovery, considering the impact of supply temperature fluctuations on utility consumption, heat exchanger sizing, bypass placement and economic performance. Key observations have been made and new heuristics are proposed to guide heat exchanger sizing to consider disturbances and bypass placement for cases above and below the HEN pinch point. Application of the methodology on two case studies shows that the impact of supply temperature fluctuations on downstream heat exchangers can be reduced through instant propagation of the disturbances to heaters or coolers. Where possible, the disturbances have been capitalised upon for additional heat recovery using the pinch analysis plus-minus principle as a guide. Results of the case study show that the HEN with maximum HE area yields economic savings of up to 15% per year relative to the HEN with a nominal HE area.


2021 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Valli Trisha ◽  
Kai Seng Koh ◽  
Lik Yin Ng ◽  
Vui Soon Chok

Limited research of heat integration has been conducted in the oleochemical field. This paper attempts to evaluate the performance of an existing heat exchanger network (HEN) of an oleochemical plant at 600 tonnes per day (TPD) in Malaysia, in which the emphases are placed on the annual saving and reduction in energy consumption. Using commercial HEN numerical software, ASPEN Energy Analyzer v10.0, it was found that the performance of the current HEN in place is excellent, saving over 80% in annual costs and reducing energy consumption by 1,882,711 gigajoule per year (GJ/year). Further analysis of the performance of the HEN was performed to identify the potential optimisation of untapped heating/cooling process streams. Two cases, which are the most cost-effective and energy efficient, were proposed with positive results. However, the second case performed better than the first case, at a lower payback time (0.83 year) and higher annual savings (0.20 million USD/year) with the addition of one heat exchanger at a capital cost of USD 134,620. The first case had a higher payback time (4.64 years), a lower annual saving (0.05 million USD/year) and three additional heaters at a capital cost of USD 193,480. This research has provided a new insight into the oleochemical industry in which retrofitting the HEN can further reduce energy consumption, which in return will reduce the overall production cost of oleochemical commodities. This is particularly crucial in making the product more competitive in its pricing in the global market.


2021 ◽  
Author(s):  
Paschal Uzoma Ndunagu ◽  
Emeka Emmanuel Alaike ◽  
Theophile Megueptchie

Abstract The objective of this paper is to perform an energy optimization study using pinch analysis on the Heat Exchanger Network (HEN) of a Crude Distillation Unit to maximum heat recovery, minimize energy consumption and increase refining margin. The heat exchanger network (HEN) considered comprises exchangers from the pre-heat section of the atmospheric distillation unit, which recovers heat from the product streams to incrementally heat the crude oil feed stream before entering the furnace. This paper illustrates how to perform a detailed HEN retrofitting study using an established design method known as Pinch Analysis to reduce the operating cost by increasing energy savings of the HEN of an existing complex refinery of moderate capacity. Analysis and optimization were carried out on the HEN of the CDU consist a total of 19 heat exchangers which include: process to process (P2P) heat exchangers, heaters and coolers. In the analysis, different feasible retrofit scenarios were generated using the pinch analysis approach. The retrofit designs included the addition of new heat exchangers, rearrangement of heat exchanger (re-sequencing) and re-piping of existing exchangers. Aspen Hysys V9 was used to simulate the CDU and Aspen Energy Analyser was used to perform pinch analysis on the HEN of the pre-heat train. Several retrofit scenarios were generated, the optimum retrofit solution was a trade-off between the capital cost of increasing heat exchanger surface area, payback time, energy / operating cost savings of hot and cold utilities. Results indicated that by rearrangement (Re-sequencing), the pre-heat train can reduce hot (fired heat) and cold (air and cooling water) utilities consumption to improve energy savings by 8% which includes savings on fired heat of about 4.6 MW for a payback period of 2 years on capital investment. The results generated were based on a ΔTmin of 10°C and pinch temperature of 46.3°C. Initial sensitivity analysis on the ΔTmin indicated that variation of total cost index is quite sensitive and increases with increase in ΔTmin at the temperature range of 14.5-30°C, however total cost index remains constant and minimal at a temperature range between 10°C-14.5°C for the CDU preheat train under study. In addition, the implementation of the optimum retrofit result is straightforward and feasible with minimum changes to the existing base case/design.


2019 ◽  
Author(s):  
Totok Ruki Biyanto ◽  
Nanda E. Tama ◽  
Inesya Permatasari ◽  
Muhammad G. Sabillah ◽  
David H. Napitupulu ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 695
Author(s):  
Yue Xu ◽  
Heri Ambonisye Kayange ◽  
Guomin Cui

The aim of heat exchanger network synthesis is to design a cost-effective network configuration with the maximum energy recovery. Therefore, a nodes-based non-structural model considering a series structure (NNM) is proposed. The proposed model utilizes a simple principle based on setting the nodes on streams such that to achieve optimization of a heat exchanger network synthesis (HENS) problem. The proposed model uses several nodes to quantify the possible positions of heat exchangers so that the matching between hot and cold streams is random and free. Besides the stream splits, heat exchangers with series structures are introduced in the proposed model. The heuristic algorithm used to solve NNM model is a random walk algorithm with compulsive evolution. The proposed model is used to solve four scale cases of a HENS problem, the results show that the costs obtained by NNM model can be respectively lower 3226 $/a(Case 1), 11,056 $/a(Case 2), 2463 $/a(Case 3), 527 $/a(Case 4) than the best costs listed in literature.


2014 ◽  
Vol 625 ◽  
pp. 373-377 ◽  
Author(s):  
Ngo Thi Phuong Thuy ◽  
Rajashekhar Pendyala ◽  
Narahari Marneni

Reduction in energy consumption is an important task in process industry. The basic idea of heat exchanger network (HEN) is using cold streams to cool hot streams and hot streams to heat cold streams. Hence, synthesis and optimization of HEN is a main tool for improving heat recovery. This article introduces a new strategy for HEN optimization using differential evolution algorithm. The proposed method considers splitting stream at the pinch point, to minimize the total cost of the network. Primarily, the minimum approach temperature value is determined through super-targeting. Then, differential evolution is employed to specify the heat load of heat exchangers and splitting streams. The HEN structure obtained in this work has better economics and illustrates the better performance by this approach.


Sign in / Sign up

Export Citation Format

Share Document