scholarly journals Heavy Metal Accumulation in Soil and Water in Pilot Scale Rice Field Treated with Sewage Sludge

2021 ◽  
Vol 5 (4) ◽  
pp. 77
Author(s):  
Lam-Van Tan ◽  
Thanh Tran

Widespread use of chemical fertilizers in agricultural activities poses a high risk of multi-micro metal contamination in soils and potentially causes health issues through consumption of contaminated foods. Bio-organic fertilizers from sewage sludge have been regarded as a suitable substitute for chemical fertilizer for rice farming. In this study, we investigated accumulation of heavy metals (Cu and Zn) in soil, water and rice plant in three pilot-scale rice paddy fields treated with different fertilization schemes. The control field was treated with conventional chemical fertilizers while the soil of two treatment fields was mixed with biological sewage sludge obtained from a local wastewater treatment system in Vietnam at different ratios (1% and 3%). Initial results showed that heavy metals accumulated in the soil, water, and rice plant at varying levels and most of the Cu and Zn contents found in soils, water and rice products exceeded permissible Vietnamese standards (QCVN 03: 2008) and US EPA 503. Notably, the rice field whose soil was treated with sludge at 3% ratio showed a significantly lower accumulation of heavy metals in soil, water and in rice plant. However, treatment of sludge at this level seemed to cause higher heavy metal retention in soil after one harvest. Semi-quantitative risk analysis revealed that the risk of metal contamination in soil and water of the control field ranged from medium (RQ index between 0.1 and 1) to high risk (RQ index higher than 1) and that fertilization methods would also affect the level of risk to the environment.

2021 ◽  
Vol 12 (4) ◽  
pp. 5486-5509

Quick industrial development, current farming practices, and other anthropogenic events enhance an important number of poisonous heavy metals in the atmosphere, which persuades severe poisonous effect on all the forms of living beings, which change the properties. This type of heavy metal pollution has ecological dangers as well as affects human health. Heavy metal contamination is mutagenic, endocrine, carcinogenic, and teratogenic, which causes nervous health problems mostly in kids. Further, an appropriate method for the remediation of adulteration of water along with soil is phytoremediation. In addition, it has been progressively utilized. Phytoremediation helps to improve the contaminated soil and water by the extraction of contaminating heavy metals, which is called phytoextraction and their phytostabilisation. Phytoremediation is based on many processes, and it is very eco-friendly, cost-effective, and economical. In this review, we aim to explain the detailed study of phytoremediation and current approaches.


2019 ◽  
Vol 06 (01) ◽  
pp. 1033-1042 ◽  
Author(s):  
Sukarjo W. Purbalisa ◽  
◽  
C O. Handayani ◽  
E S. Harsanti ◽  
◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (124) ◽  
pp. 102332-102339 ◽  
Author(s):  
Chao Li ◽  
Shinan Zhang ◽  
Jiakuan Yang ◽  
Yafei Shi ◽  
Wenbo Yu ◽  
...  

Pilot-scale sewage sludge dewatering experiments were conducted using two composite conditioners: FeCl3 + lime (Fe-lime) and Fenton's reagents + red mud (Fenton-RM).


1982 ◽  
Vol 11 (2) ◽  
pp. 182-186 ◽  
Author(s):  
W. E. Emmerich ◽  
L. J. Lund ◽  
A. L. Page ◽  
A. C. Chang

1987 ◽  
Vol 19 (8) ◽  
pp. 99-105 ◽  
Author(s):  
G. Tesan ◽  
D. Barbosa

The work presented consists of a test procedure applied at a pilot scale using soil as a biological degradation agent. The experiments described were carried out with oily residues considered as wastes difficult to degrade by other means. The tests were applied to filter cake with activated clay containing 40% oil and oily residues from re-refining of lubricants to give white oils and vaseline. The effect of the amount of moisture is evaluated using a mechanical stirrer to improve the interaction between the wastes and microorganisms. The following are also evaluated: nutrient availability; incorporation of micro-organisms into the soil; introduction of chemical fertilizers; and, injections of sludge from effluent treatment plants.


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Sign in / Sign up

Export Citation Format

Share Document