scholarly journals Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection

Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 120
Author(s):  
Navaratnarajah Kuganathan ◽  
Alexander Chroneos

Carbon nanotubes are of great interest for their ability to functionalize with atoms for adsorbing toxic gases such as CO, NO, and NO2. Here, we use density functional theory in conjunction with dispersion correction to examine the encapsulation and adsorption efficacy of SO2 and H2S molecules by a (14,0) carbon nanotube and its substitutionally doped form with Ru. Exoergic encapsulation and adsorption energies are calculated for pristine nanotubes. The interaction of molecules with pristine nanotube is non-covalent as confirmed by the negligible charge transfer. The substitutional doping of Ru does not improve the encapsulation significantly. Nevertheless, there is an important enhancement in the adsorption of molecules by Ru-doped (14,0) nanotube. Such strong adsorption is confirmed by the strong chemical interaction between the nanotube and molecules. The promising feature of Ru-doped nanotubes can be tested experimentally for SO2 and H2S gas sensing.

2013 ◽  
Vol 27 (26) ◽  
pp. 1350157 ◽  
Author(s):  
HIROYOSHI TSUYUKI ◽  
TOMOHIRO SHIIBASHI ◽  
SHOICHI SAKAMOTO ◽  
MITSUYOSHI TOMIYA

We have numerically investigated electronic transport properties in single-walled carbon nanotubes (SWCNTs) doped with boron (B) and nitrogen (N) substitutional impurities. Our calculations are performed by the ab initio density functional theory (DFT) and the nonequilibrium Green's function (NEGF) approach. We show that the electronic transmissions are moderated after the doping on both metallic and semiconducting CNTs. In B and N codoping nanotubes, depending on the arrangements of B and N substitutions, electronic and transport properties have been also modified. Calculating from electronic transmissions under bias, I–V characteristics of doped CNTs are demonstrated. In our simulations, we find that the substituting impurities in the semiconducting CNT raise the conductivity regardless of p- or n-type doping, whereas the conductivity of metallic CNTs is reduced by doping.


RSC Advances ◽  
2015 ◽  
Vol 5 (118) ◽  
pp. 97724-97733 ◽  
Author(s):  
Alireza Najafi Chermahini ◽  
Abbas Teimouri ◽  
Hossein Farrokhpour

Density functional theory (DFT) was used to investigate the adsorption of lactic acid molecule on the surface of (4,4), (5,5), (6,6) and (7,7) single-walled carbon nanotubes (SWCNTs).


2013 ◽  
Vol 683 ◽  
pp. 150-153
Author(s):  
Ni Ni Yuan ◽  
Hong Cun Bai ◽  
Yu Hua Wu ◽  
Jun Li ◽  
Yong Qiang Ji

The hybrid nanostructures made of single-walled carbon nanotubes substitutionally doped with silicon atoms were investigated by quantum chemistry calculations based on density functional theory in this paper. The zigzag (12, 0) tube was considered to construct the Si-doped tubes. The geometrical structures, relative stabilities and electronic properties of the doped tubes were studied in details and compared with those of the pristine nanotubes. It is found that the Si-doped nanotubes exhibit lower thermodynamic stability than those of the undoped tubes from viewpoint of cohesive energy. The energy levels of the frontier orbitals vary very little when the silicon atom is introduced into the nanotubes. However, most doped tubes present larger Eg than those of the pristine ones.


2016 ◽  
Vol 675-676 ◽  
pp. 109-112
Author(s):  
Irfan Dwi Aditya ◽  
Sasfan Arman Wella ◽  
Widayani ◽  
Suprijadi

In this paper we report the study of the change in electrical properties of semiconducting carbon nanotubes (CNTs) under uniaxial compressive deformations using the “Vienna ab initio simulation package” (VASP). We present an extension of density functional theory calculations to the electronic properties of the tubes, namely the density of states obtained for the optimized geometries of the tubes. There is an energy gap of 0.772 eV between occupied and unoccupied region in the optimized structure calculation. The band gap for the semi-conducting zigzag (10,0) CNTs decreases as the strain increases. It suggests that the semiconducting CNTs may become semimetal or metal upon deformation.


Sign in / Sign up

Export Citation Format

Share Document