scholarly journals Diagnosis of Duchenne Muscular Dystrophy in a Presymptomatic Infant Using Next-Generation Sequencing and Chromosomal Microarray Analysis: A Case Report

Children ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 377
Author(s):  
Eun-Woo Park ◽  
Ye-Jee Shim ◽  
Jung-Sook Ha ◽  
Jin-Hong Shin ◽  
Soyoung Lee ◽  
...  

Duchenne muscular dystrophy is a progressive and lethal X-linked recessive neuromuscular disease caused by mutations in the dystrophin gene. It has a high rate of diagnostic delay; early diagnosis and treatment are often not possible due to delayed recognition of muscle weakness and lack of effective treatments. Current treatments based on genetic therapy can improve clinical results, but treatment must begin as early as possible before significant muscle damage. Therefore, early diagnosis and rehabilitation of Duchenne muscular dystrophy are needed before symptom aggravation. Creatine kinase is a diagnostic marker of neuromuscular disorders. Herein, the authors report a case of an infant patient with Duchenne muscular dystrophy with a highly elevated creatine kinase level but no obvious symptoms of muscle weakness. The patient was diagnosed with Duchenne muscular dystrophy via next-generation sequencing and chromosomal microarray analysis to identify possible inherited metabolic and neuromuscular diseases related to profound hyperCKemia. The patient is enrolled in a rehabilitation program and awaits the approval of the genetic treatment in Korea. This is the first report of an infantile presymptomatic Duchenne muscular dystrophy diagnosis using next-generation sequencing and chromosomal microarray analysis.

Author(s):  
Gayatri Nerakh ◽  
Prajnya Ranganath ◽  
Sakthivel Murugan

AbstractMultiplex ligation-dependent probe amplification (MLPA) detects exonic deletions and duplications in the DMD gene in around 65 to 70% of patients with the Duchenne muscular dystrophy (DMD) phenotype. This study looks at the diagnostic yield of next-generation sequencing (NGS) and the mutation spectrum in an Asian Indian cohort of MLPA-negative cases with the DMD phenotype. NGS-based sequencing of DMD gene was done in 28 MLPA-negative cases (25 male probands with the DMD phenotype and 3 obligate carrier mothers of deceased affected male patients) and disease-causing variants were identified in 19 (67.9%) of these cases. Further molecular testing in four of the remaining nine cases revealed gene variants associated with limb girdle muscular dystrophies. Thus, NGS-based multigene panel testing for muscular dystrophy-associated genes or clinical exome sequencing rather than targeted DMD gene sequencing appears to be a more cost-effective testing modality with better diagnostic yield, for MLPA-negative patients with the DMD phenotype.


Sign in / Sign up

Export Citation Format

Share Document