scholarly journals Evaluating extreme precipitation events on the Iberian Peninsula using TRMM satellite data

Author(s):  
Margarida Liberato ◽  
Riccardo Hénin ◽  
Alexandre Ramos ◽  
Célia Gouveia
2020 ◽  
Author(s):  
Tommaso Caloiero ◽  
Roberto Coscarelli ◽  
Giulio Nils Caroletti

<p>In this study, the skill of TRMM Multi-Satellite Precipitation Analysis (TMPA) data to locate spatially and temporally extreme precipitation has been tested over Calabria, a region in southern Italy.</p><p>Calabria is a very challenging region for hydrometeorology studies, as i) it is a mainly mountainous region with complex orography; ii) it is surrounded by sea, providing  an abundance of available moisture; iii) it belongs to the Mediterranean region, a hot-spot for climate change.</p><p>TMPA, which provides daily data at a 0.25° resolution (i.e., about 25 km at southern Italy latitudes), was tested with regards to three extreme precipitation events that occurred between 1998 and 2019, i.e., the years of TMPA’s operational time frame. The first event, taking place on 07-12/09/2000, lasted for several days and involved most of Calabria. The second (01-04/07/2006) was a very localized midsummer event, which hit a very small area with destructive consequences. Finally, the 18-27/11/2013 event was a ten-day long heavy precipitation event that hit the region in spots.</p><p>TMPA daily data were compared against validated and homogenized rain gauge data from 79 stations managed by the Multi-Risk Functional Centre of the Regional Agency for Environmental Protection. TMPA was evaluated both in relative and absolute terms: i) the relative skill was tested by checking if TMPA evaluated correctly the presence of extreme precipitation, defined as daily precipitation passing the 99th percentile threshold; ii) the absolute skill was tested by checking if TMPA reproduced correctly the cumulated precipitation values during the events.</p><p>TMPA proved sufficiently able to locate areas subject to heavy cumulated precipitation during large spatially distributed events over the region. However, it showed difficulties in reproducing very localized events, as the 2006 case study was not detected at all, showing that 25-km spatial resolution and daily time resolution proved inadequate to resolve this type of rainfall event.</p><p>Results might give insights into the possibility of using satellite data for real-time monitoring of extreme precipitation, especially since the transition from the old TMPA to the new Integrated Multi-satellitE Retrievals for GPM (IMERG) set was completed in January 2020.</p><p> </p><p>Acknowledgments:</p><p>The Project INDECIS is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462).</p>


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1688 ◽  
Author(s):  
Riccardo Hénin ◽  
Margarida Liberato ◽  
Alexandre Ramos ◽  
Célia Gouveia

An assessment of daily accumulated precipitation during extreme precipitation events (EPEs) occurring over the period 2000–2008 in the Iberian Peninsula (IP) is presented. Different sources for precipitation data, namely ERA-Interim and ERA5 reanalysis by the European Centre for Medium-Range Weather Forecast (ECMWF) and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), both in near-real-time and post-real-time releases, are compared with the best ground-based high-resolution (0.2° × 0.2°) gridded precipitation dataset available for the IP (IB02). In this study, accuracy metrics are analysed for different quartiles of daily precipitation amounts, and additional insights are provided for a subset of EPEs extracted from an objective ranking of extreme precipitation during the extended winter period (October to March) over the IP. Results show that both reanalysis and multi-satellite datasets overestimate (underestimate) daily precipitation sums for the least (most) extreme events over the IP. In addition, it is shown that the TRMM TMPA precipitation estimates from the near-real-time product may be considered for EPEs assessment over these latitudes. Finally, it is found that the new ERA5 reanalysis accounts for large improvements over ERA-Interim and it also outperforms the satellite-based datasets.


2019 ◽  
Vol 40 (2) ◽  
pp. 1255-1278 ◽  
Author(s):  
Susana Cardoso Pereira ◽  
Martinho Marta‐Almeida ◽  
Ana C. Carvalho ◽  
Alfredo Rocha

2016 ◽  
Vol 37 (2) ◽  
pp. 607-620 ◽  
Author(s):  
Alexandre M. Ramos ◽  
Ricardo M. Trigo ◽  
Margarida L. R. Liberato

Ecology ◽  
2021 ◽  
Author(s):  
Alison K. Post ◽  
Kristin P. Davis ◽  
Jillian LaRoe ◽  
David L. Hoover ◽  
Alan K. Knapp

Sign in / Sign up

Export Citation Format

Share Document