scholarly journals Simulation to Microtopography Formation of CBN Active Abrasives on a Honing Wheel Surface

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 540
Author(s):  
Yang Gao ◽  
Xiaoqiang Ren ◽  
Jiang Han ◽  
Fuwei Wang ◽  
Yuan Liang ◽  
...  

The microtopography of a honing wheel surface composed of active abrasive grains is the key factor affecting the honing characteristics, and control of it is a sufficient condition to realize high-efficiency precision honing. Based on the magnetron sputtering method and phase field method, a theoretical model of cubic boron nitride (CBN) coating formation on a honing wheel surface is established. The physical vapor deposition (PVD) discrete phase field equation is solved by the finite difference method. A MATLAB program is compiled to simulate the formation process and micromorphology of the CBN coating on the honing wheel surface. A Taguchi method is designed to study the relationships of the sputtering time, substrate temperature, gas flow rate, and reaction space with the number of active abrasives and the length, width, height, and size of the abrasives. The simulation results are highly similar to the scanning electron microscopy (SEM) examinations, which shows that the model can accurately and effectively simulate the abrasive morphology of the wheel surface under different process conditions and provide a theoretical basis for the prediction and control of the CBN wear morphology on a honing wheel surface.

2018 ◽  
Vol 8 (10) ◽  
pp. 1948 ◽  
Author(s):  
Shafaqat Siddique ◽  
Mustafa Awd ◽  
Tillmann Wiegold ◽  
Sandra Klinge ◽  
Frank Walther

Selective laser melting process has already been developed for many metallic materials, including steel, aluminum, and titanium. The quasistatic properties of these materials have been found to be comparable or even better than their conventionally-manufactured counterparts; however, for their reliable applications in operational components, their fatigue behavior plays a critical role, which is dominated by several process-related features, like surface roughness, remnant porosity, microstructure, and residual stresses, which are controlled by the processing features, like imparted energy density to the material, its corresponding solidification behavior, the cooling rate in the process, as well as post-processing treatments. This study investigates the influence of these parameters on the cyclic deformation behavior of selective laser melted as well as hybrid-manufactured aluminum alloys. The corresponding microstructural features and porosity conditions are evaluated for developing correlations between the process conditions to microstructure, the deformation behavior, and the corresponding fatigue lives. From the numerical point of view, damage development with respect to process-induced cyclic deformation behavior is assessed by the phase-field method, which has been identified as an appropriate method for the determination of fatigue life at the respective applied stress levels. Fatigue strength of SLM-processed parts is found better than their cast counterparts, while hybridization has further increased fatigue strength. No effect of test frequency on the fatigue life could be established.


2014 ◽  
Vol 922 ◽  
pp. 832-837 ◽  
Author(s):  
Toshihiro Yamazaki ◽  
Yuichiro Koizumi ◽  
Akihiko Chiba ◽  
Koji Hagihara ◽  
Takayoshi Nakano ◽  
...  

MoSi2–based alloys are attracting attention as ultra-high temperature structural material for super-high efficiency gas turbine power generation systems. In this study, the effects of Cr-and Zr-addition on interface migration in MoSi2/NbSi2 lamellar silicide were examined by phase field simulations employing the segregation energies evaluated by the first principles calculation in addition to thermodynamic free energy in order to take into account the chemically-driven interfacial segregation. The simulation results indicate that both Cr and Zr can segregate at the lamellar interface to suppress its migration, and the Zr-addition is more effective to lower the interface migration rate than the Cr-addition owing to its higher segregation energy.


2021 ◽  
Vol 26 ◽  
pp. 102150
Author(s):  
Dong-Cho Kim ◽  
Tomo Ogura ◽  
Ryosuke Hamada ◽  
Shotaro Yamashita ◽  
Kazuyoshi Saida

Author(s):  
Bo Yin ◽  
Johannes Storm ◽  
Michael Kaliske

AbstractThe promising phase-field method has been intensively studied for crack approximation in brittle materials. The realistic representation of material degradation at a fully evolved crack is still one of the main challenges. Several energy split formulations have been postulated to describe the crack evolution physically. A recent approach based on the concept of representative crack elements (RCE) in Storm et al. (The concept of representative crack elements (RCE) for phase-field fracture: anisotropic elasticity and thermo-elasticity. Int J Numer Methods Eng 121:779–805, 2020) introduces a variational framework to derive the kinematically consistent material degradation. The realistic material degradation is further tested using the self-consistency condition, which is particularly compared to a discrete crack model. This work extends the brittle RCE phase-field modeling towards rate-dependent fracture evolution in a viscoelastic continuum. The novelty of this paper is taking internal variables due to viscoelasticity into account to determine the crack deformation state. Meanwhile, a transient extension from Storm et al. (The concept of representative crack elements (RCE) for phase-field fracture: anisotropic elasticity and thermo-elasticity. Int J Numer Methods Eng 121:779–805, 2020) is also considered. The model is derived thermodynamic-consistently and implemented into the FE framework. Several representative numerical examples are investigated, and consequently, the according findings and potential perspectives are discussed to close this paper.


Sign in / Sign up

Export Citation Format

Share Document