zr addition
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 78)

H-INDEX

24
(FIVE YEARS 5)

2021 ◽  
Vol 413 ◽  
pp. 217-224
Author(s):  
Martin Vlach ◽  
Veronika Kodetová ◽  
Hana Kudrnová ◽  
Michal Leibner ◽  
Sebastien Zikmund ◽  
...  

The commercial Al–Zn–Mg–Cu-based alloys (7xxx series) are widely used in metalworking, automotive and aircraft industries as well as in aeronautical applications. The positive effect of the Sc,Zr-addition on mechanical properties of laboratory Al-based alloys is generally known. The microstructure, mechanical and thermal properties of the conventionally cast, heat-treated and cold-rolled Al–Zn–Mg–Cu (–Sc–Zr) alloys during isochronal annealing and natural ageing were studied. Microstructure observation by scanning electron microscopy and transmission electron microscopy proved the Zn,Mg,Cu-containing eutectic phase at grain boundaries. The distinct changes in microhardness curves as well as in a heat flow of the alloys studied are mainly caused by dissolution of the clusters/Guinier-Preston (GP) zones and precipitation of particles from the Al–Zn–Mg–Cu system. An easier diffusion of Zn, Mg and Cu atoms along dislocations in the cold-rolled alloys is responsible for the precipitation of the Zn,Mg,Cu-containing particles at lower temperatures compared to the cast alloys. Microhardness values of the heat-treated alloys increase immediately from the beginning of natural ageing due to the formation of the clusters/GP zones. Addition of Sc and Zr elements results in a higher hardness above ~ 270 °C due to a strengthening by coherent secondary Al3(Sc,Zr) particles with a good thermal stability. Sc,Zr-addition has probably no influence on the evolution of the solute clusters/GP zones.


2021 ◽  
Vol 29 ◽  
pp. 101101
Author(s):  
Yingjie Wang ◽  
Shuai Xu ◽  
Haodong Jia ◽  
Zhenfeng Tong ◽  
Zhangjian Zhou

Author(s):  
Chanho Lee ◽  
Gian Song ◽  
Michael C. Gao ◽  
Lizhi Ouyang ◽  
Ke An ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5994
Author(s):  
Enrico Gianfranco Campari ◽  
Angelo Casagrande ◽  
Elena Colombini ◽  
Magdalena Lassinantti Gualtieri ◽  
Paolo Veronesi

The effect of Zr addition on the melting temperature of the CoCrFeMnNi High Entropy Alloy (HEA), known as the “Cantor’s Alloy”, is investigated, together with its micro-structure, mechanical properties and thermomechanical recrystallization process. The base and Zr-modified alloys are obtained by vacuum induction melting of mechanically pre-alloyed powders. Raw materials are then cold rolled and annealed. recrystallization occurred during the heat treatment of the cold-rolled HEA. The alloys are characterized by X-ray diffraction, electron microscopy, thermal analyses, mechanical spectroscopy and indentation measures. The main advantages of Zr addition are: (1) a fast vacuum induction melting process; (2) the lower melting temperature, due to Zr eutectics formation with all the Cantor’s alloy elements; (3) the good chemical alloy homogeneity; and (4) the mechanical properties improvement of re-crystallized grains with a coherent structure. The crystallographic lattice of both alloys results in FCC. The Zr-modified HEA presents a higher recrystallization temperature and smaller grain size after recrystallization with respect to the Cantor’s alloy, with precipitation of a coherent second phase, which enhances the alloy hardness and strength.


Sign in / Sign up

Export Citation Format

Share Document