scholarly journals Torsional Fretting Wear Properties of Thermal Oxidation-Treated Ti3SiC2 Coatings

Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 324 ◽  
Author(s):  
Jian Wang ◽  
Xiaohui Luo ◽  
Yanhua Sun

In this study, efforts were made to oxidize the Ti3SiC2 coating surface to improve its wear resistance by producing oxide layers and healing microcracks that initiated from the thermal sprayed process. Tribological behaviors of the thermal oxidation-treated Ti3SiC2 coatings subjected to various temperatures (200, 300, and 400 °C) and durations (1, 3, and 5 h) were investigated comparatively by fretting wear. The results showed that the thickness of the oxide layer and the average content of element O on the surface were gradually increased with increasing temperature. Lower friction coefficients were observed in coatings at 200–400 °C for 1 h. Better performance of crack-healing features was demonstrated at 400 °C, whereas fresh microcracks were formed under the fretting condition due to the fragility of oxides at the same time. The tribological behavior of thermal oxidation-treated Ti3SiC2 coatings was mainly controlled by delamination and abrasive wear. The volume losses induced by wear scars decreased with the increase in oxidation time under the oxidation treatment at 200 °C and increased with increasing oxidation time under the oxidation temperatures of 300 and 400 °C.

2020 ◽  
Vol 146 ◽  
pp. 106238 ◽  
Author(s):  
Xin Chen ◽  
Wenzheng Zhai ◽  
Song Dong ◽  
Kan Zheng ◽  
Runzhou Xu ◽  
...  

2018 ◽  
Vol 118 ◽  
pp. 196-207 ◽  
Author(s):  
Mingzhuo Zhou ◽  
Wenlong Lu ◽  
Xiaojun Liu ◽  
Wenzheng Zhai ◽  
Po Zhang ◽  
...  

Wear ◽  
2011 ◽  
Vol 270 (3-4) ◽  
pp. 230-240 ◽  
Author(s):  
Zhen-Bing Cai ◽  
Shan-Shan Gao ◽  
Min-Hao Zhu ◽  
Xiu-Zhou Lin ◽  
Juan Liu ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44618-44625 ◽  
Author(s):  
Kang Yang ◽  
Xiaoliang Shi ◽  
Wenzheng Zhai ◽  
Long Chen ◽  
Ao Zhang ◽  
...  

Anti-friction film with friction-reduction and anti-wear properties is formed under elastic deformation at the von Mises stress of 917 MPa (at 12 N).


2018 ◽  
Vol 924 ◽  
pp. 440-443
Author(s):  
Yeganeh Bonyadi ◽  
Peter M. Gammon ◽  
Olayiwola Alatise ◽  
Roozbeh Bonyadi ◽  
Philip A. Mawby

In this paper, the application of a high temperature thermal oxidation and annealing process to 4H-SiC PiN diodes with 35 μm thick drift regions is explored, the aim of which was to increase the carrier lifetime in the 4H-SiC. Diodes were fabricated using 4H-SiC material and underwent a thermal oxidation in dry pure O2 at 1550◦C followed by an argon anneal at the same temperature. Reverse recovery tests indicated a carrier lifetime increase of around 42% which is due to increase of excessive minority carriers in the drift region. The switching results illustrate that the use of this process is a highly effective and efficient way of enhancing the electrical characteristics of high voltage 4H-SiC bipolar devices.


2011 ◽  
Vol 183 ◽  
pp. 169-174
Author(s):  
Hanna Smolenska

The influence of oxidation time on the microstructure and mechanical property, especially on the hardness, and of Co-base alloy coatings were investigated. Coatings were manufactured by PTA cladding. The cobalt alloy was exposed to temperature 800°C in air for 1, 22 and 200 hours. As a result of oxidation treatment the scale layers were formed and changes in microstructure was observed. Also changes in hardness were noticed.


Author(s):  
Liangliang Sheng ◽  
Xiangtao Deng ◽  
Hao Li ◽  
Yuxuan Ren ◽  
Guoqing Gou ◽  
...  

In this work, an in-situ XPS analysis test combined self-designed high precision fretting wear tester was carried out to study the fretting wear behavior and the resulting tribo-oxidation of thermal-oxidation film on Ti6Al4V titanium alloy under the varied working atmosphere. The fretting-induced tribo-oxidation under the air and vacuum ([Formula: see text] Pa) environment was analyzed and its response on the resulting fretting wear resistance and damage mechanism was discussed. Results show that the working environment plays a significant role in the formation of tribo-oxidation and then determining the fretting wear resistance. Thermal-oxidation film in the vacuum atmosphere shows a better fretting wear resistance than that in the air atmosphere for all fretting regimes, except for partial slip regime (PSR) where there is an equivalent fretting wear resistance. Compared with the substrate Ti6Al4V titanium alloy, the thermal-oxidation film in the vacuum atmosphere performs a good protection for titanium alloy, especially for slip regime (SR), but not applied for air atmosphere.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 179 ◽  
Author(s):  
Jinchi Tang ◽  
Xiongfeng Hu ◽  
Fuqiang Lai ◽  
Xiaolong Guo ◽  
Shengguan Qu ◽  
...  

In this paper, the fretting wear properties of 20CrMnTi steel, a common material for a rocker bracket, was discussed for the first time after it was suffered carburizing treatment. Subsequently, the fretting wear behaviors of virgin, quenched, and carburized states were studied. The effect of loads (corresponding to different engine power output) and reciprocating frequencies (corresponding to different engine speed) on wear behaviors and mechanisms of carburized specimen were further discussed. The results showed that the coefficient of friction (CoF) and wear volume loss (WVL) of the carburized specimens were significantly lower than that of virgin and quenched states. During the wear test, the surface CoF decreased gradually with the increase of applied load, while the linear correlation trend was not observed with the increase of fretting frequency as it showed an increase first and then a decrease. It was observed that the WVL increased gradually with the increase of load and frequency. With an increase of the load, the wear mechanism gradually deteriorated from the initial adhesive wear to the mixed wear mechanism. When the load was high, the oxidative wear became more severe. However, no significant effect of frequency was observed on the wear mechanism.


Sign in / Sign up

Export Citation Format

Share Document