vacuum atmosphere
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 31)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Uğur BÜYÜK ◽  
Emin ÇADIRLI ◽  
Hasan KAYA ◽  
M. İzzettin YILMAZER

In this work, influences of composition (Cu content) and growth velocity (V) on the microstructure (dendritic spacing) of Al–Mn–Cu ternary alloys have been investigated. Al–1.9Mn–xCu (x=0.5, 1.5 and 5 wt. %) alloys were prepared using metals of 99.90% high purity in the vacuum atmosphere. These alloys were directionally solidified upwards under various growth velocities (8.3–978 m/s) using a Bridgman-type directional solidification furnace at a constant temperature gradient (7.1 K/mm). Measurements of primary dendrite arm spacing () of the samples were carried out and then expressed as functions of growth velocity and Cu content. Especially, cell-dendritic transition was detected for low growth velocity (41.6 m/s) for alloys containing 0.5 and 1.5Cu. It has been found that the values of  decrease with increasing V and decreasing Cu content. Keywords: Aluminum alloys, Solidification, Cell-dendritic transition, Dendrite arm spacing


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4319
Author(s):  
Hany S. Abdo ◽  
Ubair Abdus Samad ◽  
Mohamed S. Abdo ◽  
Hend I. Alkhammash ◽  
Muhammad Omer Aijaz

This study is focuses on the investigation of the effect of using TiO2 short nanofibers as a reinforcement of an Al matrix on the corrosion characteristics of the produced nanocomposites. The TiO2 ceramic nanofibers used were synthesized via electrospinning by sol-gel process, then calcinated at a high temperature to evaporate the residual polymers. The fabricated nanocomposites contain 0, 1, 3 and 5 wt.% of synthesized ceramic nanofibers (TiO2). Powder mixtures were mixed for 1 h via high-energy ball milling in a vacuum atmosphere before being inductively sintered through a high-frequency induction furnace at 560 °C for 6 min. The microstructure of the fabricated samples was studied by optical microscope and field emission scanning electron microscope (FESEM) before and after corrosion studies. Corrosion behavior of the sintered samples was evaluated by both electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques (PPT) in 3.5% NaCl solution for one hour and 24-h immersion times. The results show that even though the percentage of ceramic nanofibers added negatively control corrosion resistance, it is still possible to increase resistance against corrosion for the fabricated nanocomposite by more than 75% in the longer exposure time periods.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6355
Author(s):  
Francisca T. S. M. Ferreira ◽  
Raquel B. R. Mesquita ◽  
António O. S. S. Rangel

In this work, the design of a microfluidic paper-based analytical device (μPAD) for the quantification of nitrate in urine samples was described. Nitrate monitoring is highly relevant due to its association to some diseases and health conditions. The nitrate determination was achieved by combining the selectivity of the nitrate reductase enzymatic reaction with the colorimetric detection of nitrite by the well-known Griess reagent. For the optimization of the nitrate determination μPAD, several variables associated with the design and construction of the device were studied. Furthermore, the interference of the urine matrix was evaluated, and stability studies were performed, under different conditions. The developed μPAD enabled us to obtain a limit of detection of 0.04 mM, a limit of quantification of 0.14 mM and a dynamic concentration range of 0.14–1.0 mM. The designed μPAD proved to be stable for 24 h when stored at room temperature in air or vacuum atmosphere, and 60 days when stored in vacuum at −20 °C. The accuracy of the nitrate μPAD measurements was confirmed by analyzing four certified samples (prepared in synthetic urine) and performing recovery studies using urine samples.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2648
Author(s):  
Xu Zhang ◽  
Min Cai ◽  
Naxin Cui ◽  
Guifa Chen ◽  
Guoyan Zou ◽  
...  

A series of black TiO2 with and without the addition of urea were successfully prepared using a simple one-step synthetic method by calcination under different atmospheres (vacuum, He, or N2). The physicochemical, optical, and light-induced charge transfer properties of the as-prepared samples were characterized by various techniques. It was found that a vacuum atmosphere was more beneficial for the formation of oxygen vacancies (OVs) than the inert gases (He and N2) and the addition of urea-inhibited OVs formation. The samples annealed in the vacuum condition exhibited better visible-light adsorption abilities, narrower bandgaps, higher photo-induced charge separation efficiency, and lower recombination rates. Hydroxyl radicals (·OH) were the dominant oxidative species in the samples annealed under a vacuum. Finally, the samples annealed under vacuum conditions displayed higher photocatalytic activity for methylene blue (MB) degradation than the samples annealed under He or N2. Based on the above, this study provides new insights into the effects of annealing atmospheres and urea addition on the properties of black TiO2.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5229
Author(s):  
Changhun Hwang ◽  
Jondo Yun

When heat and electric field are applied to the sample, sintering takes place within a short time of a few seconds by the flash phenomenon that occurs. In what condition flash does occur is a main issue for the flash sintering technique. In this study, the effect of processing conditions such as sintering atmosphere, sample size, density and grain size on the flash onset of hydroxyapatite was investigated. In a vacuum atmosphere, a flash occurred at a lower temperature by 50–100 °C than in air. The smaller the thickness of the sample, the higher the flash onset temperature due to the larger specific surface area. Flash was also observed in samples which were presintered, having a density of 86–100% and a grain size of 0.2–0.9 μm. When the density and grain size of the sample were higher and larger, the flash onset temperature was higher. It was because the diffusion and conduction path through the grain boundary and the inner surface of the pores with high defect concentration are blocked with an increase of density or grain size. When an electric field was applied during flash sintering, a color change of the sample was observed and the reason was discussed.


Author(s):  
Liangliang Sheng ◽  
Xiangtao Deng ◽  
Hao Li ◽  
Yuxuan Ren ◽  
Guoqing Gou ◽  
...  

In this work, an in-situ XPS analysis test combined self-designed high precision fretting wear tester was carried out to study the fretting wear behavior and the resulting tribo-oxidation of thermal-oxidation film on Ti6Al4V titanium alloy under the varied working atmosphere. The fretting-induced tribo-oxidation under the air and vacuum ([Formula: see text] Pa) environment was analyzed and its response on the resulting fretting wear resistance and damage mechanism was discussed. Results show that the working environment plays a significant role in the formation of tribo-oxidation and then determining the fretting wear resistance. Thermal-oxidation film in the vacuum atmosphere shows a better fretting wear resistance than that in the air atmosphere for all fretting regimes, except for partial slip regime (PSR) where there is an equivalent fretting wear resistance. Compared with the substrate Ti6Al4V titanium alloy, the thermal-oxidation film in the vacuum atmosphere performs a good protection for titanium alloy, especially for slip regime (SR), but not applied for air atmosphere.


2021 ◽  
Vol 75 (6) ◽  
Author(s):  
YILMAZ Gokhan

AbstractMethylammonium lead iodide (MAPbI$$_3$$ 3 ) (CH$$_3$$ 3 NH$$_3$$ 3 PbI$$_3$$ 3 ) is popular material for edge technology application, but it still includes many uncertainties. Particularly, molecular and electronic degradation (electronic defect distribution) and mobility–lifetime product still hold many mysteries. Stemming from the atmospheric or light-induced degradation, mobility–lifetime product changes are still unknown and haven’t been studied up to now. In this study, mobility–lifetime product change was investigated depending on degradation source such as atmospheric and light soaked. MAPbI$$_3$$ 3 films were deposited by thermal chemical vapor deposition (thermal CVD). Structural analysis was done by X-ray diffraction (XRD), respectively. Deposited MAPbI$$_3$$ 3 films were exposed to laboratory ambient, vacuum atmosphere, deionized water vapor (DIWV) atmosphere and UV light soaking at constant temperature (300K) to define changes on mobility–lifetime product.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Ghadami ◽  
E. Taheri-Nassaj ◽  
H. R. Baharvandi ◽  
F. Ghadami

AbstractHfB2, Si, and activated carbon powders were selected to fabricate 0–30 vol% SiC reinforced HfB2-based composite. Pressureless sintering process was performed at 2050 °C for 4 h under a vacuum atmosphere. Microstructural studies revealed that in situ SiC reinforcement was formed and distributed in the composite according to the following reaction: Si + C = SiC. A maximum relative density of 98% was measured for the 20 vol% SiC containing HfB2 composite. Mechanical investigations showed that the hardness and the fracture toughness of these composites were increased and reached up to 21.2 GPa for HfB2-30 vol% SiC and 4.9 MPa.m1/2 for HfB2-20 vol% SiC, respectively. Results showed that alpha-SiC reinforcements were created jagged, irregular, and elongated in shape which were in situ formed between HfB2 grains and filled the porosities. Formation of alpha-SiC contributed to improving the relative density and mechanical properties of the composite samples. By increasing SiC content, an enhanced trend of thermal conductivity was observed as well as a reduced trend for electrical conductivity.


Sign in / Sign up

Export Citation Format

Share Document