scholarly journals Solution of the Optimal Reactive Power Flow Problem Using a Discrete-Continuous CBGA Implemented in the DigSILENT Programming Language

Computers ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 151
Author(s):  
David Lionel Bernal-Romero ◽  
Oscar Danilo Montoya ◽  
Andres Arias-Londoño

The problem of the optimal reactive power flow in transmission systems is addressed in this research from the point of view of combinatorial optimization. A discrete-continuous version of the Chu & Beasley genetic algorithm (CBGA) is proposed to model continuous variables such as voltage outputs in generators and reactive power injection in capacitor banks, as well as binary variables such as tap positions in transformers. The minimization of the total power losses is considered as the objective performance indicator. The main contribution in this research corresponds to the implementation of the CBGA in the DigSILENT Programming Language (DPL), which exploits the advantages of the power flow tool at a low computational effort. The solution of the optimal reactive power flow problem in power systems is a key task since the efficiency and secure operation of the whole electrical system depend on the adequate distribution of the reactive power in generators, transformers, shunt compensators, and transmission lines. To provide an efficient optimization tool for academics and power system operators, this paper selects the DigSILENT software, since this is widely used for power systems for industries and researchers. Numerical results in three IEEE test feeders composed of 6, 14, and 39 buses demonstrate the efficiency of the proposed CBGA in the DPL environment from DigSILENT to reduce the total grid power losses (between 21.17% to 37.62% of the benchmark case) considering four simulation scenarios regarding voltage regulation bounds and slack voltage outputs. In addition, the total processing times for the IEEE 6-, 14-, and 39-bus systems were 32.33 s, 49.45 s, and 138.88 s, which confirms the low computational effort of the optimization methods directly implemented in the DPL environment.

2019 ◽  
Vol 11 (14) ◽  
pp. 3862 ◽  
Author(s):  
Imene Cherki ◽  
Abdelkader Chaker ◽  
Zohra Djidar ◽  
Naima Khalfallah ◽  
Fadela Benzergua

In this paper, the problem of the Optimal Reactive Power Flow (ORPF) in the Algerian Western Network with 102 nodes is solved by the sequential hybridization of metaheuristics methods, which consists of the combination of both the Genetic Algorithm (GA) and the Particle Swarm Optimization (PSO). The aim of this optimization appears in the minimization of the power losses while keeping the voltage, the generated power, and the transformation ratio of the transformers within their real limits. The results obtained from this method are compared to those obtained from the two methods on populations used separately. It seems that the hybridization method gives good minimizations of the power losses in comparison to those obtained from GA and PSO, individually, considered. However, the hybrid method seems to be faster than the PSO but slower than GA.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Thanh Long Duong ◽  
Minh Quan Duong ◽  
Van-Duc Phan ◽  
Thang Trung Nguyen

In this paper, stochastic fractal search method (SFS) is employed for solving the optimal reactive power flow (ORPF) problem with a target of optimizing total active power losses (TPL), voltage deviation (VD), and voltage stability index (VSI). SFS is an effective metaheuristic algorithm consisting of diffusion process and two update processes. ORPF is a complex problem giving challenges to applied algorithms by taking into account many complex constraints such as operating voltage from generators and loads, active and reactive power generation of generators, limit of capacitors, apparent power limit from branches, and tap setting of transformers. For verifying the performance, solutions of IEEE 30 and 118-bus system with TPL, VD, and VSI objectives are found by the SFS method with different control parameter settings. Result comparisons indicate that SFS is more favorable than other methods about finding effective solutions and having faster speed. As a result, it is suggested that SFS should be used for ORPF problem, and modifications performed on SFS are encouraged for better results.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1658
Author(s):  
Leandro Almeida Vasconcelos ◽  
João Alberto Passos Filho ◽  
André Luis Marques Marcato ◽  
Giovani Santiago Junqueira

The use of Direct Current (DC) transmission links in power systems is increasing continuously. Thus, it is important to develop new techniques to model the inclusion of these devices in network analysis, in order to allow studies of the operation and expansion planning of large-scale electric power systems. In this context, the main objective of this paper is to present a new methodology for a simultaneous AC-DC power flow for a multi-terminal High Voltage Direct Current (HVDC) system with a generic representation of the DC network. The proposed methodology is based on a full Newton formulation for solving the AC-DC power flow problem. Equations representing the converters and steady-state control strategies are included in a power flow problem formulation, resulting in an expanded Jacobian matrix of the Newton method. Some results are presented based on HVDC test systems to confirm the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document