scholarly journals Topological Equivalence of the Phase Diagrams of Molybdenum and Tungsten

Crystals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 20 ◽  
Author(s):  
Samuel Baty ◽  
Leonid Burakovsky ◽  
Dean Preston

We demonstrate the topological equivalence of the phase diagrams of molybdenum (Mo) and tungsten (W), Group 6B partners in the periodic table. The phase digram of Mo to 800 GPa from our earlier work is now extended to 2000 GPa. The phase diagram of W to 2500 GPa is obtained using a comprehensive ab initio approach that includes (i) the calculation of the T = 0 free energies (enthalpies) of different solid structures, (ii) the quantum molecular dynamics simulation of the melting curves of different solid structures, (iii) the derivation of the analytic form for the solid–solid phase transition boundary, and (iv) the simulations of the solidification of liquid W into the final solid states on both sides of the solid–solid phase transition boundary in order to confirm the corresponding analytic form. For both Mo and W, there are two solid structures confirmed to be present on their phase diagrams, the ambient body-centered cubic (bcc) and the high-pressure double hexagonal close-packed (dhcp), such that at T = 0 the bcc–dhcp transition occurs at 660 GPa in Mo and 1060 GPa in W. In either case, the transition boundary has a positive slope d T / d P .

2018 ◽  
Vol 6 (5) ◽  
pp. 1116-1125 ◽  
Author(s):  
Qing Liu ◽  
Jing-Feng Li ◽  
Lei Zhao ◽  
Yichi Zhang ◽  
Jing Gao ◽  
...  

A large and thermally stable d33 was observed in dense and translucent KNN-based ceramics. Forming the R–O–T diffused phase transition is validated as a feasible way to realize the simultaneous enhancement of piezoelectricity and thermal stability.


2010 ◽  
Vol 63 (4) ◽  
pp. 544 ◽  
Author(s):  
Anja-Verena Mudring

Ionic liquids (ILs) have become an important class of solvents and soft materials over the past decades. Despite being salts built by discrete cations and anions, many of them are liquid at room temperature and below. They have been used in a wide variety of applications such as electrochemistry, separation science, chemical synthesis and catalysis, for breaking azeotropes, as thermal fluids, lubricants and additives, for gas storage, for cellulose processing, and photovoltaics. It has been realized that the true advantage of ILs is their modular character. Each specific cation–anion combination is characterized by a unique, characteristic set of chemical and physical properties. Although ILs have been known for roughly a century, they are still a novel class of compounds to exploit due to the vast number of possible ion combinations and one fundamental question remains still inadequately answered: why do certain salts like ILs have such a low melting point and do not crystallize readily? This Review aims to give an insight into the liquid–solid phase transition of ILs from the viewpoint of a solid-state chemist and hopes to contribute to a better understanding of this intriguing class of compounds. It will introduce the fundamental theories of liquid–solid-phase transition and crystallization from melt and solution. Aside form the formation of ideal crystals the development of solid phases with disorder and of lower order like plastic crystals and liquid crystals by ionic liquid compounds are addressed. The formation of ionic liquid glasses is discussed and finally practical techniques, strategies and methods for crystallization of ionic liquids are given.


Sign in / Sign up

Export Citation Format

Share Document