scholarly journals Ternary Aluminides of a New Homologous Series—CePt2Al2 and CePt3Al3: Crystal Structures and Thermal Properties

Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 465 ◽  
Author(s):  
Elena Murashova ◽  
Yuliya Morozova ◽  
Sergey Dunaev ◽  
Zhanafiya Kurenbaeva ◽  
Anna Tursina

In the process of studying the Ce–Pt–Al system, we identified CePt2Al2 and CePt3Al3, two new ternary intermetallic compounds. CePt2Al2 aluminide undergoes a structural phase transition from a low-temperature orthorhombic modification (of its own structure type, Cmme, a = 5.84138(2) Å, b = 6.39099(3) Å, c = 10.11611(5) Å) to a high-temperature tetragonal modification (CaBe2Ge2 type, P4/nmm, a = 4.3637(9) Å, c = 10.0925(14) Å) at 280(1) °C. CePt3Al3 crystallizes with a new type of structure (Cmme, a = 6.36548(6) Å, b = 5.78301(6) Å, c = 13.36245(19) Å) built of structural units of low-temperature orthorhombic CePt2Al2-type and CsCl-type.

1995 ◽  
Vol 396 ◽  
Author(s):  
L. A. Gea ◽  
L. A. Boatner ◽  
J. D. Budai ◽  
R. A. Zuhr

AbstractIn this work, we report the formation of a new type of active or “smart” surface that is produced by ion implantation and thermal processing. By co-implanting vanadium and oxygen into a single-crystal sapphire substrate and annealing the system under appropriate conditions, it was possible to form buried precipitates of vanadium dioxide that were crystallographically oriented with respect to the host AI2O3 lattice. The implanted VO2 precipitate system undergoes a structural phase transition that is accompanied by large variations in the optical transmission which are comparable to those observed for thin films of VO2 deposited on sapphire. Co-implantation with oxygen was found to be necessary to ensure good optical switching behavior.


1987 ◽  
Vol 103 (1) ◽  
pp. 73-78 ◽  
Author(s):  
H. Ketata ◽  
M. H. Ben Ghozlen ◽  
A. Daoud ◽  
I. Pabst

Author(s):  
Khai-Nghi Truong ◽  
Carina Merkens ◽  
Martin Meven ◽  
Björn Faßbänder ◽  
Richard Dronskowski ◽  
...  

Single-crystal neutron diffraction experiments at 100 and 2.5 K have been performed to determine the structure of 3-(pyridin-4-yl)pentane-2,4-dione (HacacPy) with respect to its protonation pattern and to monitor a low-temperature phase transition. Solid HacacPy exists as the enol tautomer with a short intramolecular hydrogen bond. At 100 K, its donor···acceptor distance is 2.450 (8) Å and the compound adopts space group C2/c, with the N and para-C atoms of the pyridyl ring and the central C of the acetylacetone substituent on the twofold crystallographic axis. As a consequence of the axial symmetry, the bridging hydrogen is disordered over two symmetrically equivalent positions, and the carbon–oxygen bond distances adopt intermediate values between single and double bonds. Upon cooling, a structural phase transition to the t 2 subgroup P\bar 1 occurs; the resulting twins show an ordered acetylacetone moiety. The phase transition is fully reversible but associated with an appreciable hysteresis in the large single crystal under study: transition to the low-temperature phase requires several hours at 2.5 K and heating to 80 K is required to revert the transformation. No significant hysteresis is observed in a powder sample, in agreement with the second-order nature of the phase transition.


1996 ◽  
Vol 46 (S3) ◽  
pp. 1237-1238 ◽  
Author(s):  
Takao Suzuki ◽  
Kaichiro Chiba ◽  
Takayuki Goto ◽  
Tetsuo Fukase

1991 ◽  
Vol 185-189 ◽  
pp. 791-792 ◽  
Author(s):  
Yoji Koike ◽  
Tsutomu Kawaguchi ◽  
Syoichi Hosoya ◽  
Naoki Watanabe ◽  
Takahashi Noji ◽  
...  

1995 ◽  
Vol 197 (5-6) ◽  
pp. 439-443 ◽  
Author(s):  
Z.J. Yang ◽  
M. Yewondwossen ◽  
R.A. Dunlap ◽  
D.J.W. Geldart ◽  
S.L. Yuan ◽  
...  

2000 ◽  
Vol 55 (9-10) ◽  
pp. 759-764 ◽  
Author(s):  
E. Mikuli ◽  
A. Migdał-Mikuli ◽  
I. Natkaniec ◽  
J. Mayer

Abstract DSC measurements performed at 95 -290 K have shown that [Mn(H 2 O) 6 ](CIO 4) 2 possesses, besides a high-temperature phase, existing above 323 K, four low-temperature solid phases. The inelastic incoherent neutron scattering (IINS) spectra and neutron powder diffraction (NPD) pat-terns registered at 20 -290 K have supported the DSC results and provided evidence that the investigated substance possesses even more than five solid phases. The IINS spectra have shown that in the room-temperature phase, water molecules perform fast stochastic reorientation at the picosecond scale. The orientational disorder characteristic for the room-temperature phase can be easily overcooled and frozen. Even by relatively slow cooling at ca. 40 K/hour a metastable, orientational (protonic) glass phase is formed below ca. 160 K. Below ca. 100 K, a structural phase transition was observed by the NPD, however the IINS spectra indicate existence of the pure ordered low-temperature phase only after annealing the sample for a few hours at 100 K. On heating, a structural phase transition takes place at ca. 120 K, and at ca. 225 K water molecules begin fast reorientation.


2000 ◽  
Vol 64 (2) ◽  
pp. 291-300 ◽  
Author(s):  
K. S. Knight

AbstractHigh-resolution, neutron time-of-flight, powder diffraction data have been collected on natural crocoite between 873 and 1073 K. Thermal analysis carried out in the 1920s had suggested that chemically pure PbCrO4 exhibited two structural phase transitions, at 964 K, to the β phase, and at 1056 K, to the γ phase. In this study, no evidence was found for the α-β structural phase transition, however a high-temperature phase transition was found at ∼1068 K from the ambient-temperature monazite structure type to the baryte structure type. The phase transition, close to the temperatures reported for the β to γ phase modifications, is first order and is accompanied by a change in volume of −1.6%. The crystal structure of this phase has been refined using the Rietveld method to agreement factors of Rp = 0.018, Rwp = 0.019, Rp = 0.011. No evidence for premonitory behaviour was found in the temperature dependence of the monoclinic lattice constants rom 873 K to 1063 K and these have been used to determine the thermal expansion tensor of crocoite just below the phase transition. At 1000 K the magnitudes of the tensor coefficients are α11, 2.66(1) × 10−5 K−1; α22, 2.04(1) × 10−5 K−1; α33, 4.67(4) × 10−5 K−1; and α13, −1.80(2) × 10−5 K−1 using the IRE convention for the orientation of the tensor basis. The orientation of the principal axes of the thermal expansion tensor are very close to those reported previously for the temperature range 50–300 K.


Sign in / Sign up

Export Citation Format

Share Document