scholarly journals Not Cleaving the His-tag of Thal Results in More Tightly Packed and Better-Diffracting Crystals

Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1135
Author(s):  
Ann-Christin Moritzer ◽  
Tina Prior ◽  
Hartmut H. Niemann

Flavin-dependent halogenases chlorinate or brominate their substrates in an environmentally friendly manner, only requiring the cofactor reduced flavin adenine dinucleotide (FADH2), oxygen, and halide salts. The tryptophan 6-halogenase Thal exhibits two flexible loops, which become ordered (substrate-binding loop) or adopt a closed conformation (FAD loop) upon substrate or cofactor binding. Here, we describe the structure of NHis-Thal-RebH5 containing an N-terminal His-tag from pET28a, which crystallized in a different space group (P21) and, surprisingly, diffracted to a higher resolution of 1.63 Å than previously deposited Thal structures (P64; ~2.2 Å) with cleaved His-tag. Interestingly, the binding of glycine in the active site can induce an ordered conformation of the substrate-binding loop.

2010 ◽  
Vol 66 (6) ◽  
pp. 673-684 ◽  
Author(s):  
Radhika Malik ◽  
Ronald E. Viola

The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 Å resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg2+and NADH. This TDH structure fromPseudomonas putidahas a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.


1994 ◽  
Vol 304 (1) ◽  
pp. 95-99 ◽  
Author(s):  
G Labesse ◽  
A Vidal-Cros ◽  
J Chomilier ◽  
M Gaudry ◽  
J P Mornon

Using both primary- and tertiary-structure comparisons, we have established new structural similarities shared by reductases, epimerases and dehydrogenases not previously known to be related. Despite the low sequence identity (down to 10%), short consensus segments are identified. We show that the sequence, the active site and the supersecondary structure are well conserved in these proteins. New homologues (the protochlorophyllide reductases) are detected, and we define a new superfamily composed of single-domain dinucleotide-binding enzymes. Rules for the cofactor-binding specificity are deduced from our sequence alignment. The involvement of some amino acids in catalysis is discussed. Comparison with two-domain dehydrogenases allows us to distinguish two general mechanisms of divergent evolution.


Biochemistry ◽  
2000 ◽  
Vol 39 (32) ◽  
pp. 9811-9818 ◽  
Author(s):  
Dan Yin ◽  
Xiaoda Yang ◽  
Yongbo Hu ◽  
Krysztof Kuczera ◽  
Richard L. Schowen ◽  
...  

2015 ◽  
Vol 418 ◽  
pp. 50-56 ◽  
Author(s):  
Shijia Liu ◽  
Shangjin Shao ◽  
Linlin Li ◽  
Zhi Cheng ◽  
Li Tian ◽  
...  

2008 ◽  
Vol 48 (supplement) ◽  
pp. S40
Author(s):  
Keisuke Sakurai ◽  
Katsuyoshi Harada ◽  
Kunitoshi Shimokata ◽  
Takashi Hayashi ◽  
Hideo Shimada

2014 ◽  
Vol 70 (a1) ◽  
pp. C1207-C1207
Author(s):  
Leighton Coates

β-lactam antibiotics have been used effectively over several decades against many types of highly virulent bacteria. The predominant cause of resistance to these antibiotics in Gram-negative bacterial pathogens is the production of serine β-lactamase enzymes. A key aspect of the class A serine β-lactamase mechanism that remains unresolved and controversial is the identity of the residue acting as the catalytic base during the acylation reaction. Multiple mechanisms have been proposed for the formation of the acyl-enzyme intermediate that are predicated on understanding the protonation states and hydrogen-bonding interactions among the important residues involved in substrate binding and catalysis of these enzymes. For resolving a controversy of this nature surrounding the catalytic mechanism, neutron crystallography is a powerful complement to X-ray crystallography that can explicitly determine the location of deuterium atoms in proteins, thereby directly revealing the hydrogen-bonding interactions of important amino acid residues. Neutron crystallography was used to unambiguously reveal the ground-state active site protonation states and the resulting hydrogen-bonding network in two ligand-free Toho-1 β-lactamase mutants which provided remarkably clear pictures of the active site region prior to substrate binding and subsequent acylation [1,2] and an acylation transition-state analog, benzothiophene-2-boronic acid (BZB), which was also isotopically enriched with 11B. The neutron structure revealed the locations of all deuterium atoms in the active site region and clearly indicated that Glu166 is protonated in the BZB transition-state analog complex. As a result, the complete hydrogen-bonding pathway throughout the active site region could then deduced for this protein-ligand complex that mimics the acylation tetrahedral intermediate [3].


2020 ◽  
Author(s):  
Michal Lisnyansky Bar-El ◽  
Pavla Vankova ◽  
Petr Man ◽  
Yoni Haitin ◽  
Moshe Giladi

AbstractThe human cis-prenyltransferase (hcis-PT) is an enzymatic complex essential for protein N-glycosylation. Synthesizing the precursor of the glycosyl carrier dolichol-phosphate, we reveal here that hcis-PT exhibits a novel heterotetrameric assembly in solution, composed of two catalytic dehydrodolichyl diphosphate synthase (DHDDS) and two inactive Nogo-B receptor (NgBR) subunits. The 2.3 Å crystal structure of the complex exposes a dimer-of-heterodimers arrangement, with DHDDS C-termini serving as homotypic assembly domains. Furthermore, the structure elucidates the molecular details associated with substrate binding, catalysis, and product length determination. Importantly, the distal C-terminus of NgBR transverses across the heterodimeric interface, directly participating in substrate binding and underlying the allosteric communication between the subunits. Finally, mapping disease-associated hcis-PT mutations involved in blindness, neurological and glycosylation disorders onto the structure reveals their clustering around the active site. Together, our structure of the hcis-PT complex unveils the dolichol synthesis mechanism and its perturbation in disease.


Sign in / Sign up

Export Citation Format

Share Document