Substrate Binding StabilizesS-Adenosylhomocysteine Hydrolase in a Closed Conformation†

Biochemistry ◽  
2000 ◽  
Vol 39 (32) ◽  
pp. 9811-9818 ◽  
Author(s):  
Dan Yin ◽  
Xiaoda Yang ◽  
Yongbo Hu ◽  
Krysztof Kuczera ◽  
Richard L. Schowen ◽  
...  
2021 ◽  
Author(s):  
Chih-Wei Huang ◽  
Chi-Ching Hwang ◽  
Yung-Lung Chang ◽  
Jen-Tzu Liu ◽  
Sheng-Peng Wu ◽  
...  

4-Hydroxylphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxylphenylpyruvate (HPP) to homogentisate, the important step for tyrosine catabolism. Comparison of the structure of human HPPD with the substrate-bound structure of A. thaliana HPPD revealed notably different orientations of the C-terminal helix. This helix performed as a closed conformation in human enzyme. Simulation revealed a different substrate-binding mode in which the carboxyl group of HPP interacted by a H-bond network formed by Gln334, Glu349 (the metal-binding ligand), and Asn363 (in the C-terminal helix). The 4-hydroxyl group of HPP interacted with Gln251 and Gln265. The relative activity and substrate-binding affinity were preserved for the Q334A mutant, implying the alternative role of Asn363 for HPP binding and catalysis. The reduction in kcat/Km of the Asn363 mutants confirmed the critical role in catalysis. Compared to the N363A mutant, the dramatic reduction in the Kd and thermal stability of the N363D mutant implies the side-chain effect in the hinge region rotation of the C-terminal helix. The activity and binding affinity were not recovered by double mutation; however, the 4-hydroxyphenylacetate intermediate formation by the uncoupled reaction of Q334N/N363Q and Q334A/N363D mutants indicated the importance of the H-bond network in the electrophilic reaction. These results highlight the functional role of the H-bond network in a closed conformation of the C-terminal helix to stabilize the bound substrate. The extremely low activity and reduction in Q251E’s Kd suggest that interaction coupled with the H-bond network is crucial to locate the substrate for nucleophilic reaction.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1135
Author(s):  
Ann-Christin Moritzer ◽  
Tina Prior ◽  
Hartmut H. Niemann

Flavin-dependent halogenases chlorinate or brominate their substrates in an environmentally friendly manner, only requiring the cofactor reduced flavin adenine dinucleotide (FADH2), oxygen, and halide salts. The tryptophan 6-halogenase Thal exhibits two flexible loops, which become ordered (substrate-binding loop) or adopt a closed conformation (FAD loop) upon substrate or cofactor binding. Here, we describe the structure of NHis-Thal-RebH5 containing an N-terminal His-tag from pET28a, which crystallized in a different space group (P21) and, surprisingly, diffracted to a higher resolution of 1.63 Å than previously deposited Thal structures (P64; ~2.2 Å) with cleaved His-tag. Interestingly, the binding of glycine in the active site can induce an ordered conformation of the substrate-binding loop.


Biochemistry ◽  
2001 ◽  
Vol 40 (50) ◽  
pp. 15143-15152 ◽  
Author(s):  
Yongbo Hu ◽  
Xiaoda Yang ◽  
Daniel H. Yin ◽  
Janaki Mahadevan ◽  
Krzysztof Kuczera ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Marijn de Boer ◽  
Giorgos Gouridis ◽  
Ruslan Vietrov ◽  
Stephanie L Begg ◽  
Gea K Schuurman-Wolters ◽  
...  

Substrate-binding proteins (SBPs) are associated with ATP-binding cassette importers and switch from an open to a closed conformation upon substrate binding, providing specificity for transport. We investigated the effect of substrates on the conformational dynamics of six SBPs and the impact on transport. Using single-molecule FRET, we reveal an unrecognized diversity of plasticity in SBPs. We show that a unique closed SBP conformation does not exist for transported substrates. Instead, SBPs sample a range of conformations that activate transport. Certain non-transported ligands leave the structure largely unaltered or trigger a conformation distinct from that of transported substrates. Intriguingly, in some cases, similar SBP conformations are formed by both transported and non-transported ligands. In this case, the inability for transport arises from slow opening of the SBP or the selectivity provided by the translocator. Our results reveal the complex interplay between ligand-SBP interactions, SBP conformational dynamics and substrate transport.


2020 ◽  
Author(s):  
Wenguang Liang ◽  
Juwina wijaya ◽  
Hui Wei ◽  
Alex Noble ◽  
Swansea Mo ◽  
...  

Abstract Presequence protease (PreP), a 117 kDa mitochondrial M16C metalloprotease vital for mitochondrial proteostasis, degrades presequence peptides cleaved off from nuclear-encoded proteins and other aggregation-prone peptides, such as amyloid β (Aβ). PreP structures have only been determined in a closed conformation; thus, the mechanisms of substrate binding and selectivity remain elusive. Here, we leverage advanced vitrification techniques to overcome the preferential denaturation of one of two ~55 kDa homologous domains of PreP caused by air-water interface adsorption, and thereby elucidate cryoEM structures of three apo-PreP open states along with Aβ- and citrate synthase presequence-bound PreP at 3.3 Å-4.6 Å resolution. Together with integrative biophysical and pharmacological approaches, these structures reveal the key stages of the PreP catalytic cycle and how the binding of substrates or PreP inhibitor drives the rigid body motion of the protein for substrate binding and catalysis. Together, our studies provide key mechanistic insights into M16C metalloproteases for future therapeutic innovations.


Author(s):  
Simone Culurgioni ◽  
Minzhe Tang ◽  
Martin Austin Walsh

Streptococcus pneumoniaeis an opportunistic respiratory pathogen that remains a major cause of morbidity and mortality globally, with infants and the elderly at the highest risk.S. pneumoniaerelies entirely on carbohydrates as a source of carbon and dedicates a third of all uptake systems to carbohydrate import. The structure of the carbohydrate-free substrate-binding protein SP0092 at 1.61 Å resolution reveals it to belong to the newly proposed subclass G of substrate-binding proteins, with a ligand-binding pocket that is large enough to accommodate complex oligosaccharides. SP0092 is a dimer in solution and the crystal structure reveals a domain-swapped dimer with the monomer subunits in a closed conformation but in the absence of carbohydrate ligand. This closed conformation may be induced by dimer formation and could be used as a mechanism to regulate carbohydrate uptake.


2019 ◽  
Author(s):  
Marijn de Boer ◽  
Giorgos Gouridis ◽  
Ruslan Vietrov ◽  
Stephanie L. Begg ◽  
Gea K. Schuurman-Wolters ◽  
...  

ABSTRACTSubstrate-binding proteins (SBPs) are associated with ATP-binding cassette importers and switch from an open-to a closed-conformation upon substrate binding providing specificity for transport. We investigated the effect of substrates on the conformational dynamics of six SBPs and the impact on transport. Using single-molecule FRET, we reveal an unrecognized diversity of plasticity in SBPs. We show that a unique closed SBP conformation does not exist for transported substrates. Instead, SBPs sample a range of conformations that activate transport. Certain non-transported ligands leave the structure largely unaltered or trigger a conformation distinct from that of transported substrates. Intriguingly, in some cases similar SBP conformations are formed by both transported and non-transported ligands. In this case, the inability for transport arises from slow opening of the SBP or the selectivity provided by the translocator. Our results reveal the complex interplay between ligand-SBP interactions, SBP conformational dynamics and substrate transport.


Author(s):  
Irwin I. Singer

Our previous results indicate that two types of fibronectin-cytoskeletal associations may be formed at the fibroblast surface: dorsal matrixbinding fibronexuses generated in high serum (5% FBS) cultures, and ventral substrate-adhering units formed in low serum (0.3% FBS) cultures. The substrate-adhering fibronexus consists of at least vinculin (VN) and actin in its cytoplasmic leg, and fibronectin (FN) as one of its major extracellular components. This substrate-adhesion complex is localized in focal contacts, the sites of closest substratum approach visualized with interference reflection microscopy, which appear to be the major points of cell-tosubstrate adhesion. In fibroblasts, the latter substrate-binding complex is characteristic of cultures that are arrested at the G1 phase of the cell cycle due to the low serum concentration in their medium. These arrested fibroblasts are very well spread, flattened, and immobile.


Sign in / Sign up

Export Citation Format

Share Document