scholarly journals Approach of Serial Crystallography II

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 655
Author(s):  
Ki-Hyun Nam

Serial crystallography (SX) is an emerging X-ray crystallographic method for determining macromolecule structures. It can address concerns regarding the limitations of data collected by conventional crystallography techniques, which require cryogenic-temperature environments and allow crystals to accumulate radiation damage. Time-resolved SX studies using the pump-probe methodology provide useful information for understanding macromolecular mechanisms and structure fluctuation dynamics. This Special Issue deals with the serial crystallography approach using an X-ray free electron laser (XFEL) and synchrotron X-ray source, and reviews recent SX research involving synchrotron use. These reports provide insights into future serial crystallography research trends and approaches.

Author(s):  
Wenting Wu ◽  
Przemyslaw Nogly ◽  
Jan Rheinberger ◽  
Leonhard M. Kick ◽  
Cornelius Gati ◽  
...  

Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.


2019 ◽  
Vol 9 (24) ◽  
pp. 5505 ◽  
Author(s):  
Eriko Nango ◽  
Minoru Kubo ◽  
Kensuke Tono ◽  
So Iwata

Structural information on protein dynamics is a critical factor in fully understanding the protein functions. Pump-probe time-resolved serial femtosecond crystallography (TR-SFX) is a recently established technique for visualizing the structural changes or reactions in proteins that are at work with high spatial and temporal resolution. In the pump-probe method, protein microcrystals are continuously delivered from an injector and exposed to an X-ray free-electron laser (XFEL) pulse after a trigger to initiate a reaction, such as light, chemicals, temperature, and electric field, which affords the structural snapshots of intermediates that occur in the protein. We are in the process of developing the device and techniques for pump-probe TR-SFX while using XFEL produced at SPring-8 Angstrom Compact Free-Electron Laser (SACLA). In this paper, we described our current development details and data collection strategies for the optical pump X-ray probe TR-SFX experiment at SACLA and then reported the techniques of in crystallo TR spectroscopy, which is useful in clarifying the nature of reaction that takes place in crystals in advance.


Author(s):  
Zhen Zhang ◽  
Joseph Duris ◽  
James P. MacArthur ◽  
Zhirong Huang ◽  
Agostino Marinelli

Author(s):  
Marius Schmidt ◽  
Suraj Pandey ◽  
Adrian Mancuso ◽  
Richard Bean

Abstract This protocol introduces step by step into the collection of time resolved crystallographic data and their analysis at the European Free Electron Laser.


2020 ◽  
Vol 10 (21) ◽  
pp. 7852
Author(s):  
Hiroshi Iwayama ◽  
Masanari Nagasaka ◽  
Ichiro Inoue ◽  
Shigeki Owada ◽  
Makina Yabashi ◽  
...  

We demonstrate the applicability of third- and fifth-order harmonics of free-electron laser (FEL) radiation for soft X-ray absorption spectroscopy in the transmission mode at SACLA BL1, which covers a photon energy range of 20 to 150 eV in the fundamental FEL radiation. By using the third- and fifth-order harmonics of the FEL radiation, we successfully recorded near-edge X-ray absorption fine structure (NEXAFS) spectra for Ar 2p core ionization and CO2 C 1s and O 1s core ionizations. Our results show that the utilization of third- and fifth-order harmonics can significantly extend the available photon energies for NEXAFS spectroscopy using an FEL and opens the door to femtosecond pump-probe NEXAFS using a soft X-ray FEL.


2016 ◽  
Vol 24 (11) ◽  
pp. 11768 ◽  
Author(s):  
Nora Berrah ◽  
Li Fang ◽  
Brendan F Murphy ◽  
Edwin Kukk ◽  
Timur Y. Osipov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document